il
N il il
— A e
— e T O
— = e - -
. s
Al
A i
~ -

Contents

2 Conditionals

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4

4.1
4.2
4.3
4.4
4.5
4.6

>

5.1
5.2
5.3
5.4
5.5
5.6

6

6.1
6.2
6.3

Preamble

TEX primitives

e-TgX primitives
LuaTgX primitives
LuaMetaTgX primitives
For the brave

Relaxing

Boxes

Introduction

Boxes

TEX primitives

e-TgX primitives
LuaTgX primitives
LuaMetaTgX primitives
Splitting

Expansion

Preamble

TEX primitives

e-TgX primitives
LuaTlgX primitives
LuaMetaTgX primitives
Dirty tricks

Registers

Preamble

TEX primitives

e-TEX primitives
LualgX primitives
LuaMetaTgX primitives
Units

Macros

Preamble
Definitions
Runaway arguments

13
20
24
28
40
42

46
47
47
48
o1
51
52
60

66
67
67
72
74
75
85

88
89
89
92
92
93
94

100
101
101
111

6.4 Introspection

6.5 nesting

6.6 Prefixes

6.7 Arguments

6.8 Constants

6.9 Passing parameters
6.10 Nesting

6.11 Duplicate hashes

7 Grouping

7.1 Introduction

7.2 Kinds of grouping
7.3 Hooks

7.4 Local versus global
7.5 Files

8 Security

8.1 Preamble

8.2 Flags

8.3 Complications

8.4 Introspection

9 Characters

9.1 Introduction

9.2 History

9.3 The heritage

9.4 The LMTX approach
9.5 spaces

10 Scope

10.1 Introduction

10.2 Registers

10.3 Allocation

10.4 Files

11 Paragraphs

11.1
11.2
11.3
11.4
11.5
11.6

Introduction
Paragraphs
Properties
Wrapping up
Hanging
Shapes

112
113
116
118
119
120
124
125

132
133
135
137
138
141

142
143
143
146
147

148
149
149
150
151
154

156
157
157
159
162

164
165
165
168
171
171
171

11.7
11.8
11.9

Modes
Leaders
Prevdepth

11.10 Normalization
11.11 Dirty tricks
11.12 Penalties
11.13 Par passes

12 Alignments

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9

Introduction
Between the lines

Pre-, inter- and post-tab skips

Cell widths
Plugins

Pitfalls and tricks
Rows

Templates

Pitfalls

12.10 Remark

13 Marks

13.1
13.2
13.3
13.4
13.5
13.6

Introduction

The basics

Migration

Tracing

High level commands
Pitfalls

14 Inserts

14.1
14.2
14.3
14.4
14.5
14.6
14.7

Introduction

The page builder
Inserts

Storing
Synchronizing
Migration
Callbacks

15 Localboxes

15.1
15.2
15.3
15.4

Introduction
The basics
The interface
The helpers

190
191
197
199
199
199
200

203
204
206
208
211
212
215
218
220
221
223

224
225
225
226
229
230
232

233
234
234
236
237
237
237
237

238
239
239
242
247

16 Loops

16.1
16.2
16.3
16.4
16.5
16.6
16.7

Introduction
Primitives
Wrappers

About quitting
Simple repeaters
Endless loops
Loop variables

17 Tokens

17.1
17.2
17.3
17.4
17.5
17.6

Introduction

What are tokens

Some implementation details
Other data management
Macros

Looking at tokens

18 Buffers

18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9

Preamble
Encoding
Performance
Files

Macros
Token lists
Buffers
Setups

xml

18.10Lua
18.11 Protection

19 Accuracy

19.1
19.2
19.3
19.4

Introduction
Posits
MetaPost
Lua

20 Balancing

20.1
20.2
20.3
20.4

Introduction
Intercepting the MVL
Balancing

Forcing breaks

249
250
250
254
256
256
256
256

259
260
260
263
263
264
264

271
272
272
273
274
274
275
275
278
279
279
279

281
282
283
286
287

288
289
289
292
297

20.5
20.6
20.7
20.8
20.9

Marks
Inserts
Discardables
Passes
Passes

21 Lines

21.1
21.2
21.3
21.4
21.5
21.6
21.7
21.8
21.9

Introduction

Warning

Constructing paragraphs
Subpasses

Definitions

Tracing

Criterion

Examples

Pages

21.10 Profiles

22 Debugging

22.1
22.2
22.3
22.4
22.5
22.6
22.7
22.8
22.9

Introduction
Token lists

Node lists

Visual debugging
Math

Fonts

Overflow

Side floats

Struts

22.10 Features
22.11 Profiling
22.12 Par builder
22.13 More

23 Pages

23.1
23.2

Introduction
Rows becoming columns

298
298
302
304
305

306
307
308
308
312
316
318
321
321
322
325

327
328
328
331
332
333
335
336
337
338
338
339
340
341

342
343
343

Colofon

Author Hans Hagen

ConTgXt 2025.02.19 14:35
LuaMetaTgX 2.11.07 ‘ 20250219
Support www.pragma-ade.com

contextgarden.net
ntg-context@ntg.nl

2 Conditionals

low level

1EX

conditionals

Contents

2.1 Preamble 8
2.2 TgX primitives 13
2.3 &-TgX primitives 20
2.4 LuaTgX primitives 24
2.5 LuaMetaTgX primitives 28
2.6 For the brave 40
2.7 Relaxing 42

2.1 Preamble

2.1.1 Introduction

You seldom need the low level conditionals because there are quite some so called
support macros available in ConTgXt. For instance, when you want to compare two
values (or more accurate: sequences of tokens), you can do this:

\doifelse {foo} {bar} {
the same

A
different

}

But if you look in the ConTgXt code, you will see that often we use primitives that start
with \if in low level macros. There are good reasons for this. First of all, it looks
familiar when you also code in other languages. Another reason is performance but
that is only true in cases where the snippet of code is expanded very often, because
TeX is already pretty fast. Using low level TgX can also be more verbose, which is not
always nice in a document source. But, the most important reason (for me) is the layout
of the code. I often let the look and feel of code determine the kind of coding. This also
relates to the syntax highlighting that I am using, which is consistent for TgX, MetaPost,
Lua, etc. and evolved over decades. If code looks bad, it probably is bad. Of course this
doesn't mean all my code looks good; you're warned. In general we can say that I often
use \if... when coding core macros, and \doifelse... macros in (document) styles
and modules.

In the sections below I will discuss the low level conditions in TgX. For the often more
convenient ConTgXt wrappers you can consult the source of the system and support
modules, the wiki and/or manuals.

Preamble

Some of the primitives shown here are only available in LuaTgX, and some only in Lua-
MetaTgX. We could do without them for decades but they were added to these engines
because of convenience and, more important, because then made for nicer code. Of
course there's also the fun aspect. This manual is not an invitation to use these very
low level primitives in your document source. The ones that probably make most sense
are \ifnum, \ifdim and \ifcase. The others are often wrapped into support macros
that are more convenient.

2.1.2 Number and dimensions

Numbers and dimensions are basic data types in TgX. When you enter one, a number is
just that but a dimension gets a unit. Compare:

1234
1234pt

If you also use MetaPost, you need to be aware of the fact that in that language there
are not really dimensions. The post part of the name implies that eventually a number
becomes a PostScript unit which represents a base point (bp) in TgX. When in MetaPost
you entry 1234pt you actually multiply 1234 by the variable pt. In TgX on the other
hand, a unit like pt is one of the keywords that gets parsed. Internally dimensions are
also numbers and the unit (keyword) tells the scanner what multiplier to use. When
that multiplier is one, we're talking of scaled points, with the unit sp.

\the\dimexpr 12.34pt \relax
\the\dimexpr 12.34sp \relax
\the\dimexpr 12.99sp \relax
\the\dimexpr 1234sp \relax
\the\numexpr 1234 \relax

12.34pt
0.00018pt
0.00018pt
0.01883pt
1234

When we serialize a dimension it always shows the dimension in points, unless we se-
rialize it as number.

\scratchdimenl1234sp
\number\scratchdimen
\the\scratchdimen

Preamble

10

1234
0.01883pt

When a number is scanned, the first thing that is taken care of is the sign. In many
cases, when TgX scans for something specific it will ignore spaces. It will happily accept
multiple signs:

\number +123
\number +++123
\number + + + 123
\number +-+-+123
\number --123
\number ---123

123
123
123
123
123
-123

Watch how the negation accumulates. The scanner can handle decimal, hexadecimal
and octal numbers:

\number -123
\number -"123
\number -'123

-123
-291
-83

A dimension is scanned like a number but this time the scanner checks for upto three
parts: an either or not signed number, a period and a fraction. Here no number means
zero, so the next is valid:

\the\dimexpr . pt \relax
\the\dimexpr 1. pt \relax
\the\dimexpr .1pt \relax
\the\dimexpr 1.1pt \relax

0.0pt
1.0pt

Preamble

11

0.1pt
1.1pt

Again we can use hexadecimal and octal numbers but when these are entered, there
can be no fractional part.

\the\dimexpr 16 pt \relax
\the\dimexpr "10 pt \relax
\the\dimexpr '20 pt \relax

16.0pt
16.0pt
16.0pt

The reason for discussing numbers and dimensions here is that there are cases where
when TgX expects a number it will also accept a dimension. It is good to know that for
instance a macro defined with \chardef or \mathchardef also is treated as a number.
Even normal characters can be numbers, when prefixed by a ~ (backtick).

The maximum number in TgX is 2147483647 so we can do this:
\scratchcounter2147483647

but not this

\scratchcounter2147483648

as it will trigger an error. A dimension can be positive and negative so there we can do
at most:

\scratchdimen 1073741823sp

\scratchdimenl1073741823sp
\number\scratchdimen
\the\scratchdimen
\scratchdimen16383.99998pt
\number\scratchdimen
\the\scratchdimen

1073741823
16383.99998pt
1073741823
16383.99998pt

Preamble

12

We can also do this:

\scratchdimenl16383.99999pt
\number\scratchdimen
\the\scratchdimen

1073741823
16383.99998pt

but the next one will fail:
\scratchdimen16383.9999999pt

Just keep in mind that TgX scans both parts as number so the error comes from checking
if those numbers combine well.

\ifdim 16383.99999 pt = 16383.99998 pt the same \else different \fi
\ifdim 16383.999979 pt = 16383.999980 pt the same \else different \fi
\ifdim 16383.999987 pt = 16383.999991 pt the same \else different \fi

Watch the difference in dividing, the / rounds, while the : truncates.

the same
the same
the same

You need to be aware of border cases, although in practice they never really are a
problem:

\ifdim \dimexprl16383.99997 pt/2\relax
the same \else different

\fi

\ifdim \dimexprl6383.99997 pt:2\relax
the same \else different

\fi

\dimexpr 16383.99998 pt/2\relax

\dimexpr 16383.99998 pt:2\relax

different
the same

\ifdim \dimexprl.99997 pt/2\relax
the same \else different

\fi

\ifdim \dimexprl.99997 pt:2\relax
the same \else different

\dimexpr 1.99998 pt/2\relax

\dimexpr 1.99998 pt:2\relax

Preamble

13

\fi

different
the same

\ifdim \dimexprl.999999 pt/2\relax
the same \else different

\dimexpr 1.9999995 pt/2\relax

\fi
\ifdim \dimexprl.999999 pt:2\relax
the same \else different

\dimexpr 1.9999995 pt:2\relax

\fi

the same
the same

This last case demonstrates that at some point the digits get dropped (still assuming
that the fraction is within the maximum permitted) so these numbers then are the same.
Anyway, this is not different in other programming languages and just something you
need to be aware of.

2.2 TEX primitives

2.2.1 \if

I seldom use this one. Internally TgX stores (and thinks) in terms of tokens. If you see
for instance \def or \dimen or \hbox these all become tokens. But characters like A or
@ also become tokens. In this test primitive all non-characters are considered to be the
same. In the next examples this is demonstrated.

[\if AB yes\else nop\fi]
[\if AA yes\else nop\fi]
[\1f CDyes\else nop\fi]
[\if CCyes\else nop\fi]
[\if\dimen\font yes\else nop\fi]
[\if\dimen\font yes\else nop\fi]

Watch how spaces after the two characters are kept: [nop] [yes] [nop] [yes] [yes] [yes].
This primitive looks at the next two tokens but when doing so it expands. Just look at
the following:

\def\AA{AA}%

TEX primitives

14

\def\AB{AB}%
[\if\AA yes\else nop\fi]
[\1f\AB yes\else nop\fi]

We get: [yes] [nop].

2.2.2 \ifcat

In TEX characters (in the input) get interpreted according to their so called catcodes.
The most common are letters (alphabetic) and and other (symbols) but for instance the
backslash has the property that it starts a command, the dollar signs trigger math mode,
while the curly braced deal with grouping. If for instance either or not the ampersand
is special (for instance as column separator in tables) depends on the macro package.

[\ifcat AB yes\else nop\fi]
[\ifcat AA yes\else nop\fi]
[\ifcat CDyes\else nop\fi]
[\ifcat CCyes\else nop\fil
[\ifcat Clyes\else nop\fi]
[\ifcat\dimen\font yes\else nop\fi]
[\ifcat\dimen\font yes\else nop\fi]

This time we also compare a letter with a number: [yes] [yes] [yes] [yes] [nop] [yes]
[yes]. In that case the category codes differ (letter vs other) but in this test comparing
the letters result in a match. This is a test that is used only once in ConTgXt and even
that occasion is dubious and will go away.

You can use \noexpand to prevent expansion:

\def\A{A}%

\let\B B%

\def\C{D}%

\let\D D%

[\ifcat\noexpand\A Ayes\else nop\fi]
[\ifcat\noexpand\B Byes\else nop\fi]
[\ifcat\noexpand\C Cyes\else nop\fi]
[\ifcat\noexpand\C Dyes\else nop\fil]
[\ifcat\noexpand\D Dyes\else nop\fi]

We get: [nop] [yes] [nop] [nop] [yes], so who still thinks that TgX is easy to understand
for a novice user?

TEX primitives

15

2.2.3 \1ifnum

This condition compares its argument with another one, separated by an <, = or > char-
acter.

\ifnum\scratchcounter<0
less than
\else\ifnum\scratchcounter>0
more than
\else
equal to
\fi zero

This is one of these situations where a dimension can be used instead. In that case the
dimension is in scaled points.

\ifnum\scratchdimen<0
less than
\else\ifnum\scratchdimen>0
more than
\else
equal to
\fi zero

Of course this equal treatment of a dimension and number is only true when the dimen-
sion is a register or box property.

2.2.4 \ifdim

This condition compares one dimension with another one, separated by an <, = or >
sign.

\ifdim\scratchdimen<0Opt
less than
\else\ifdim\scratchdimen>0pt
more than
\else
equal to
\fi zero

While when comparing numbers a dimension is a valid quantity but here you cannot
mix them: something with a unit is expected.

TEX primitives

16

2.2.5 \ifodd

This one can come in handy, although in ConTgXt it is only used in checking for an odd
of even page number.

\scratchdimen 3sp
\scratchcounter4

\ifodd\scratchdimen very \else not so \fi odd
\ifodd\scratchcounter very \else not so \fi odd

As with the previously discussed \ifnum you can use a dimension variable too, which is
then interpreted as representing scaled points. Here we get:

very odd
not so odd

2.2.6 \1ifvmode

This is a rather trivial check. It takes no arguments and just is true when we're in
vertical mode. Here is an example:

\hbox{\ifvmode\else\par\fi\ifvmode v\else h\fi mode}

We're always in horizontal mode and issuing a \par inside a horizontal box doesn't
change that, so we get: hmode.

2.2.7 \1fhmode

As with \ifvmode this one has no argument and just tells if we're in vertical mode.

\vbox {
\noindent \ifhmode h\else v\fi mode
\par
\ifhmode h\else \noindent v\fi mode

}

You can use it for instance to trigger injection of code, or prevent that some content (or
command) is done more than once:

mode

vmode

TEX primitives

17

2.2.8 \ifmmode

Math is something very TgX so naturally you can check if you're in math mode. here is
an example of using this test:

\def\enforcemath#l{\ifmmode#1\else$ #1 $\fi}

Of course in reality macros that do such things are more advanced than this one.

2.2.9 \ifinner

\def\ShowMode
{\ifhmode \ifinner inner \fi hmode
\else\ifvmode \ifinner inner \fi vmode
\else\ifmmode \ifinner inner \fi mmode
\else \ifinner inner \fi unset
\fi\fi\fi}

\ShowMode \ShowMode
\vbox{\ShowMode}
\hbox{\ShowMode}
\ShowMode
$$\ShowMode$$

The first line has two tests, where the first one changes the mode to horizontal simply
because a text has been typeset. Watch how display math is not inner.

vmode hmode
inner vmode
inner hmode
innermmode
innermmode

By the way, moving the \ifinner test outside the branches (to the top of the macro)
won't work because once the word inner is typeset we're no longer in vertical mode, if
we were at all.

TEX primitives

2.2.10 \ifvoid

A box is one of the basic concepts in TgX. In order to understand this primitive we

present four cases:

\setbox0\hbox{} \ifvoid0®
\setbox0\hbox{123} \ifvoid0
\setbox0\hbox{} \box® \ifvoid0O

\setbox0\hbox to 10pt{} \ifvoid0

In the first case, we have a box which is empty but it's not void. It helps to know that
internally an hbox is actually an object with a pointer to a linked list of nodes. So, the

first two can be seen as:

hlist -> [nothing]

hlist -> 1 -> 2 -> 3 -> [nothing]

but in any case there is a hlist. The third case puts something in a hlist but then flushes
it. Now we have not even the hlist any more; the box register has become void. The
last case is a variant on the first. It is an empty box with a given width. The outcome

18

void \else
void \else
void \else
void \else

of the four lines (with a box flushed in between) is:

content
content

void
content

So, when you want to test if a box is really empty, you need to test also its dimensions,

content \fi
content \fi
content \fi
content \fi

which can be up to three tests, depending on your needs.

\setbox0\emptybox
\setbox0\emptybox
\setbox0\hbox to 10pt {}
\setbox0\hbox

Setting a dimension of a void (empty) box doesn't make it less void:

void
void
content
content

\ifvoid0®

\wd0=10pt \ifvoidO

\ifvoid0

{} \wd0=10pt \ifvoid0

TEX primitives

void\else
void\else
void\else
void\else

content\fi
content\fi
content\fi
content\fi

19

2.2.11 \ifhbox

This test takes a box number and gives true when it is an hbox.

2.2.12 \ifvbox

This test takes a box number and gives true when it is an vbox. Both a \vbox and \vtop
are vboxes, the difference is in the height and depth and the baseline. In a \vbox the
last line determines the baseline

vbox or vtop

vtop or vbox

And in a \vtop the first line takes control:

vbox or vtop

vtop or vbox

but, once wrapped, both internally are just vlists.

2.2.13 \ifx

This test is actually used a lot in ConTgXt: it compares two token(list)s:

\ifx a b Y\else N\fi
\ifx ab Y\else N\fi
\def\A {a}\def\B{b}\ifx \A\B Y\else N\fi
\def\A{aa}\def\B{a}\ifx \A\B Y\else N\fi
\def\A {a}\def\B{a}\ifx \A\B Y\else N\fi

Here the result is: “NNNNY”. It does not expand the content, if you want that you need
to use an \edef to create two (temporary) macros that get compared, like in:

\edef\TempA{...}\edef\TempB{...}\ifx\TempA\TempB ...\else ...\fi

2.2.14 \ifeof

This test checks if a the pointer in a given input channel has reached its end. It is
also true when the file is not present. The argument is a number which relates to the
\openin primitive that is used to open files for reading.

TEX primitives

20

2.2.15 \iftrue

It does what it says: always true.

2.2.16 \iffalse

It does what it says: always false.

2.2.17 \ifcase
The general layout of an \ifcase tests is as follows:

\ifcase<number>

when zero
\or

when one
\or

when two
\or

\else
when something else
\fi

As in other places a number is a sequence of signs followed by one of more digits
2.3 e-IgX primitives

2.3.1 \ifdefined

This primitive was introduced for checking the existence of a macro (or primitive) and
with good reason. Say that you want to know if \MyMacro is defined? One way to do
that is:

\ifx\MyMacro\undefined
{\bf undefined indeed}
\fi

This results in: undefined indeed, but is this macro really undefined? When TEX scans
your source and sees a the escape character (the forward slash) it will grab the next

e-IgX primitives

21

characters and construct a control sequence from it. Then it finds out that there is
nothing with that name and it will create a hash entry for a macro with that name but
with no meaning. Because \undefined is also not defined, these two macros have the
same meaning and therefore the \ifx is true. Imagine that you do this many times, with
different macro names, then your hash can fill up. Also, when a user defined \undefined
you're suddenly get a different outcome.

In order to catch the last problem there is the option to test directly:

\ifdefined\MyOtherMacro \else
{\bf also undefined}
\fi

This (or course) results in: also undefined, but the macro is still sort of defined (with
no meaning). The next section shows how to get around this.

2.3.2 \ifcsname

A macro is often defined using a ready made name, as in:

\def\OhYes{yes}

The name is made from characters with catcode letter which means that you cannot use
for instance digits or underscores unless you also give these characters that catcode,
which is not that handy in a document. You can however use \csname to define a control
sequence with any character in the name, like:

\expandafter\def\csname Oh Yes : 1l\endcsname{yes}
Later on you can get this one with \csname:

\csname Oh Yes : 1\endcsname

However, if you say:

\csname Oh Yes : 2\endcsname

you won't get some result, nor a message about an undefined control sequence, but
the name triggers a define anyway, this time not with no meaning (undefined) but as
equivalent to \relax, which is why

\expandafter\ifx\csname Oh Yes : 2\endcsname\relax
{\bf relaxed indeed}

e-IgX primitives

22

\fi

is the way to test its existence. As with the test in the previous section, this can deplete
the hash when you do lots of such tests. The way out of this is:

\ifcsname Oh Yes : 2\endcsname \else
{\bf unknown indeed}
\fi

This time there is no hash entry created and therefore there is not even an undefined
control sequence.

In LuaTgX there is an option to return false in case of a messy expansion during this
test, and in LuaMetaTgX that is default. This means that tests can be made quite robust
as it is pretty safe to assume that names that make sense are constructed from regular
characters and not boxes, font switches, etc.

2.3.3 \iffontchar

This test was also part of the e-TEX extensions and it can be used to see if a font has a
character.

\iffontchar\font A
{\em This font has an A!}
\fi

And, as expected, the outcome is: “This font has an A!”. The test takes two arguments,
the first being a font identifier and the second a character number, so the next checks
are all valid:

\iffontchar\font "A yes\else nop\fi\par
\iffontchar\nullfont A yes\else nop\fi\par
\iffontchar\textfontd A yes\else nop\fi\par

In the perspective of LuaMetaTgX I considered also supporting \fontid but it got a bit
messy due to the fact that this primitive expands in a different way so this extension
was rejected.

2.3.4 \unless

You can negate the results of a test by using the \unless prefix, so for instance you can
replace:

e-IgX primitives

23

\ifdim\scratchdimen=10pt
\dosomething

\else\ifdim\scratchdimen<1lOpt
\dosomething

\fi\fi

by:

\unless\ifdim\scratchdimen>10pt
\dosomething
\fi

An\unless makes little sense when used with \ifcase but contrary to the other engines
we don't error or it; we just give a warning. Some conditionals internally use a case so
there we can actually provide a variant:

one \par
two \par

\ifcase 1 \relax zero \or one \or two \else else \fi
\ifcase 2 \relax zero \or one \or two \else else \fi

\unless\ifcase 1 \relax zero \or one \or two \else else \fi % warning
\unless\ifcase 2 \relax zero \or one \or two \else else \fi % warning

\ifchkdimlpt\or yes \else nop \fi
\ifchkdim2 \or nop \else yes \fi

yes \par
yes \par

\unless\ifchkdimlpt\or nop \else yes \fi = yes \par
\unless\ifchkdim2 \or yes \else nop \fi = yes \par

The \ifchkdim, \ifchkdimension, \ifchknum, \ifchknumber and \ifparameter are
supported.

one = one
two = two
one two

yes = yes
yes = yes
yes = yes
yes = yes

e-IgX primitives

24

2.4 LuaTgX primitives

2.4.1 \ifincsname

As it had no real practical usage uit might get dropped in LuaMetaTgX, so it will not be
discussed here.

2.4.2 \ifprimitive

As it had no real practical usage due to limitations, this one is not available in LuaMeta-
TEX so it will not be discussed here. If really needed you can use \ifflags.

2.4.3 \ifabsnum

This test is inherited from pdfTEX and behaves like \ifnum but first turns a negative
number into a positive one.

2.4.4 \ifabsdim

This test is inherited from pdfTgX and behaves like \ifdim but first turns a negative
dimension into a positive one.

2.4.5 \1fcondition

This is not really a test but in order to unstand that you need to know how TgX internally
deals with tests.

\ifdimen\scratchdimen>10pt
\ifdim\scratchdimen<20pt
result a
\else
result b
\fi
\else
result c
\fi

When we end up in the branch of “result a” we need to skip two \else branches after
we're done. The \if.. commands increment a level while the \fi decrements a level.

LuaTgX primitives

25

The \else needs to be skipped here. In other cases the true branch needs to be skipped
till we end up a the right \else. When doing this skipping, TgX is not interested in what
it encounters beyond these tokens and this skipping (therefore) goes real fast but it
does see nested conditions and doesn't interpret grouping related tokens.

A side effect of this is that the next is not working as expected:

\def\ifmorethan{\ifdim\scratchdimen>}
\def\iflessthan{\ifdim\scratchdimen<}

\ifmorethanl0Opt
\iflessthan20pt
result a
\else
result b
\fi
\else
result c
\fi

The \iflessthan macro is not seen as an \if... so the nesting gets messed up. The
solution is to fool the scanner in thinking that it is. Say we have:

\scratchdimen=25pt

\def\ifmorethan{\ifdim\scratchdimen>}
\def\iflessthan{\ifdim\scratchdimen<}

and:

\ifcondition\ifmorethanlOpt
\ifcondition\iflessthan20pt
result a
\else
result b
\fi
\else
result c
\fi

When we expand this snippet we get: “result b” and no error concerning a failure
in locating the right \fi's. So, when scanning the \ifcondition is seen as a valid

LuaTgX primitives

26

\if... but when the condition is really expanded it gets ignored and the \ifmorethan
has better come up with a match or not.

In this perspective it is also worth mentioning that nesting problems can be avoided
this way:

\def\WhenTrue {something \iftrue ...}
\def\WhenFalse{something \iffalse ...}

\ifnum\scratchcounter>123
\let\next\WhenTrue
\else
\let\next\WhenFalse
\fi
\next

This trick is mentioned in The TgXbook and can also be found in the plain TEX format.
A variant is this:

\ifnum\scratchcounter>123
\expandafter\WhenTrue
\else
\expandafter\WhenFalse
\fi

but using \expandafter can be quite intimidating especially when there are multiple
in a row. It can also be confusing. Take this: an \ifcondition expects the code that
follows to produce a test. So:

\def\ifwhatever#1%
{\ifdim#1>10pt
\expandafter\iftrue
\else
\expandafter\iffalse
\fi}

\ifcondition\ifwhatever{10pt}
result a

\else
result b

\fi

LuaTgX primitives

27

This will not work! The reason is in the already mentioned fact that when we end up
in the greater than 10pt case, the scanner will happily push the \iftrue after the \fi,
which is okay, but when skipping over the \else it sees a nested condition without
matching \fi, which makes ity fail. I will spare you a solution with lots of nasty tricks,
so here is the clean solution using \ifcondition:

\def\truecondition {\iftrue}
\def\falsecondition{\iffalse}

\def\ifwhatever#1%
{\ifdim#1>10pt
\expandafter\truecondition
\else
\expandafter\falsecondition
\fi}

\ifcondition\ifwhatever{10pt}
result a

\else
result b

\fi

It will be no surprise that the two macros at the top are predefined in ConTgXt. It
might be more of a surprise that at the time of this writing the usage in ConTgXt of this
\ifcondition primitive is rather minimal. But that might change.

As a further teaser I'll show another simple one,
\def\HowOdd#1{\unless\ifnum\numexpr ((#1):2)*2\relax=\numexpr#l\relax}

\ifcondition\HowOdd{1}very \else not so \fi odd
\ifcondition\HowOdd{2}very \else not so \fi odd
\ifcondition\HowOdd{3}very \else not so \fi odd

This renders:

very odd
not so odd
very odd

The code demonstrates several tricks. First of all we use \numexpr which permits more
complex arguments, like:

\ifcondition\HowOdd{4+1}very \else not so \fi odd

LuaTgX primitives

28

\ifcondition\HowOdd{2\scratchcounter+9}very \else not so \fi odd

Another trick is that we use an integer division (the :) which is an operator supported
by LuaMetaTgX.

2.5 LuaMetalgX primitives

2.5.1 \ifnum and ifdim

These have been extended with a few more operators. For instance, we can use a
negation:

\ifnum 10 > 5 Y\else N\fi
\ifnum 10 !> 5 Y\else N\fi

Results in: YN. A bitwise comparison is possible too:

\ifnum "02 & 2 Y\else N\fi
\ifnum "02 & 4 Y\else N\fi
\ifnum "02 !'& 8 Y\else N\fi

yields: YNY. You can also use the Unicode variants €, €, #, <, =, £, and 2.

2.5.2 \iffloat

This is a test for a float, much like a test for a dimen without unit.

2.5.3 \ifabsfloat

This is a test for a float, much like a test for a dimen without unit.

2.5.4 \ifintervalnum
This is a test for equality of two numbers within an interval, as in:

\ifintervalnum 1 2 1 Y\else N\fi
\ifintervalnum 1 3 1 Y\else N\fi
\ifintervalnum 100 102 1 Y\else N\fi
\ifintervalnum 100 102 3 Y\else N\fi

which results in: YNNY.

LuaMetaTgX primitives

29

2.5.5 \ifintervaldim

This is a test for equality of two dimensions within an interval, as in:

\ifintervaldim 1pt 2pt 1pt Y\else N\fi
\ifintervaldim 1pt 3pt 1pt Y\else N\fi
\ifintervaldim 100pt 102pt 1pt Y\else N\fi
\ifintervaldim 100pt 102pt 3pt Y\else N\fi

We get: YNNY.

2.5.6 \ifintervalfloat

This is a test for a float, much like a test for a dimen without unit.

2.5.7 \ifdimexpression
This is a boolean checker so the comparison is done as part of the expression, as in:

\ifdimexpression{10pt > (4pt + 8pt)}Y\else N\fi

2.5.8 \ifnumexpression
This is a boolean checker so the comparison is done as part fo the expression, as in:

\ifnumexpression{10 > (4 + 8)}Y\else N\fi

2.5.9 \ifcmpnum

This one is part of s set of three tests that all are a variant of a \ifcase test. A simple
example of the first test is this:

\ifcmpnum 123 345 less \or equal \else more \fi

The test scans for two numbers, which of course can be registers or expressions, and
sets the case value to 0, 1 or 2, which means that you then use the normal \or and
\else primitives for follow up on the test.

2.5.10 \ifchknum

This test scans a number and when it's okay sets the case value to 1, and otherwise to
2. So you can do the next:

LuaMetaTgX primitives

30

\ifchknum 123\or good \else bad \fi
\ifchknum bad\or good \else bad \fi

An error message is suppressed and the first \or can be seen as a sort of recovery
token, although in fact we just use the fast scanner mode that comes with the \ifcase:
because the result is 1 or 2, we never see invalid tokens.

In order to avoid another scan the a valid result it is made available in \lastchknumber.

2.5.11 \ifchknumber

This one is a more rigorous variant of \ifchknum and doesn't like trailing non numeric
crap.

2.5.12 \ifchknumexpr

This test goes a bit further and accepts an expression.

\ifchknumexpr 123 + 45\or good \else bad \fi

As with the other checkers, if there is a valid result it is available in \lastchknumber.

2.5.13 \ifnumval

A sort of combination of the previous two is \ifnumval which checks a number but also
if it's less, equal or more than zero:

\ifnumval 123\or less \or equal \or more \else error \fi
\ifnumval bad\or less \or equal \or more \else error \fi

You can decide to ignore the bad number or do something that makes more sense. Often
the to be checked value will be the content of a macro or an argument like #1.

2.5.14 \ifcmpdim

This test is like \ifcmpnum but for dimensions.

2.5.15 \ifchkdim

This test is like \ifchknum but for dimensions. The last checked value is available as
\lastchknumber.

LuaMetaTgX primitives

31

2.5.16 \ifchkdimension

This one is a more rigorous variant of \ifchkdim and doesn't like trailing rubish.

2.5.17 \ifchkdimexpr

This test is like \ifchknumexpr but for dimensions. The last checked value is available
as \lastchkdimension.

2.5.18 \ifdimval

This test is like \ifnumval but for dimensions. The last checked value is available as
\lastchkdim

2.5.19 \iftok

Although this test is still experimental it can be used. What happens is that two to be
compared ‘things’ get scanned for. For each we first gobble spaces and \relax tokens.
Then we can have several cases:

When we see a left brace, a list of tokens is scanned upto the matching right brace.
When a reference to a token register is seen, that register is taken as value.

When a reference to an internal token register is seen, that register is taken as value.
When a macro is seen, its definition becomes the to be compared value.

When a number is seen, the value of the corresponding register is taken

ok W=

An example of the first case is:
\iftok {abc} {def}%

\else

\fi

The second case goes like this:

\iftok\scratchtoksone\scratchtokstwo
\else

\fi

LuaMetaTgX primitives

32

Case one and four mixed:

\iftok{123}\TempX

\else

\fi

The last case is more a catch: it will issue an error when no number is given. Eventually
that might become a bit more clever (depending on our needs.)

2.5.20 \ifzeronum, \ifzerodim, \ifzerofloat

The names of these three tells what they do: checking for a zero value.

(\ifzerodim 10pt\norelax A\orelse\ifzerodim Opt\norelax B\else C\fi)
(\1fzeronum 10 \norelax A\orelse\ifzeronum O \norelax B\else C\fi)
(\ifzerofloat 10.0\norelax A\orelse\ifzerofloat 0.0\norelax B\else C\fi)

Here we use the \norelax to get rid of trailing spaces: (B) (B) (B).

2.5.21 \ifhaschar, \ifhastok, \1fhastoks,\ifhasxtoks

These checkers can be used to identify a (sequence) of token(s) in a given token list.
Their working can best be shown with a few examples:

\ifhaschar ¢ {abcd}Y\else N\fi
\ifhastok c {abcd}Y\else N\fi
\ifhastoks {c}{abcd}Y\else N\fi
\ifhasxtoks {c}{abcd}Y\else N\fi

\def\abcd{abcd}

\ifhaschar c¢ {\abcd}Y\else N\fi
\ifhastok c {\abcd}Y\else N\fi
\ifhastoks {c}{\abcd}Y\else N\fi
\ifhasxtoks {c}{\abcd}Y\else N\fi

\ifhaschar c¢ {a{bc}d}Y\else N\fi
\ifhastok c {a{bc}d}Y\else N\fi
\ifhastoks {c}{a{bc}d}Y\else N\fi
\ifhasxtoks {c}{a{bc}d}Y\else N\fi

LuaMetaTgX primitives

33

\def\abcd{a{bc}d}

\ifhaschar c {\abcd}Y\else N\fi
\ifhastok c {\abcd}Y\else N\fi
\ifhastoks {c}{\abcd}Y\else N\fi
\ifhasxtoks {c}{\abcd}Y\else N\fi

YYYY
NNNY
NYYY
NNNY

The \ifhaschar test will not descend into a braced sublist. The x variants expand the
list before comparison.

2.5.22 \ifcstok

There is a subtle difference between this one and \iftok: spaces and \relax tokens are
skipped but nothing gets expanded. So, when we arrive at the to be compared ‘things’
we look at what is there, as-is.

2.5.23 \iffrozen

This is an experimental test. Commands can be defined with the \frozen prefix and
this test can be used to check if that has been the case.

2.5.24 \ifprotected

Commands can be defined with the \protected prefix (or in ConTgXt, for historic rea-
sons, with \unexpanded) and this test can be used to check if that has been the case.

2.5.25 \ifarguments

This conditional can be used to check how many arguments were matched. It only
makes sense when used with macros defined with the \tolerant prefix and/or when
the sentinel \ignorearguments after the arguments is used. More details can be found
in the lowlevel macros manual.

LuaMetaTgX primitives

34

2.5.26 \ifrelax

The following tests all return the same: YYY; it is a shortcut for \ifx ... \relax that
looks nicer in code.

\ifrelax\relax Y\else N\fi
\ifrelax\norelax Y\else N\fi
\expandafter\ifrelax\csname RelLaX\endcsname Y\else N\fi

2.5.27 \ifempty

This is again a shortcut, this time for \ifx ...\empty assuming that \empty is defined
as being nothing. Instead of a token you can also pass a list, so here we get YNY.

\ifempty{} Y\else N\fi
\ifempty{!'} Y\else N\fi
\ifempty\empty Y\else N\fi

2.5.28 \iflastnamedcs

This test is part of the \csname repertoire and uses the last valid result from such a
command.

\def\Hello{upper}
\def\hello{lower}
\ifcsname Hello\endcsname
\iflastnamedcs\hello
world
\orelse\iflastnamedcs\Hello
World
\fi
\fi

Here the ‘Hello’ test result in “‘World’. It is an example of a follow up test, most likely
used in user interfacing.

2.5.29 \ifboolean

Another new one is the following: it tests a number for being zero or not. As with any
primitive that scans for a number, it accepts a braced expression too.

LuaMetaTgX primitives

35

(\ifboolean 0 T\else F\fi)

(\ifboolean 1 T\else F\fi)

(\ifboolean {(2 * 4) < 5} T\else F\fi)

(\ifboolean \dimexpression{(lem > 20pt) or (lex > 15pt)} T\else F\fi)
(\ifboolean \dimexpression{(lem > 3pt) and (lex < 3pt)} T\else F\fi)

We get: (F) (T) (F) (F) (F).

2.5.30 \iflist

The \ifvoid test doesn't really test for a box being empty, which is why we have an
additional primitive. Compare the following:

\setbox0\hbox{}

\setbox2\hbox{'}
\setbox4\emptybox % \box\voidbox
\sethox8\box6

\wd0 10pt \wd2 10pt \wd4 10pt \wd6 10Opt

o°

[\i1fvoid0O Y\else N\fi \iflist0O Y\else N\fi \the\wdO] empty hbox
[\ifvoid2 Y\else N\fi \iflist2 Y\else N\fi \the\wd2] % hbox with content
[\ifvoid4 Y\else N\fi \iflist4 Y\else N\fi \the\wd4] no box

[\ifvoid6 Y\else N\fi \iflist6 Y\else N\fi \the\wd6] % no box

o°® o°

\°

The result demonstrates that we check if there is any content at all, independent of
dimensions or the presence of a wrapping list node.

[NN10.0pt] [NY10.0pt] [YNO.Opt] [YNO.Opt]

2.5.31 \ifcramped

This test relates to math and in particular to four of the eight states:

\im {
\sqrt
{\ifcramped\mathstyle y\else n\fi}
~ {\ifcramped\mathstyle y\else n\fi}
~ {\ifcramped\mathstyle y\else n\fi}
}

LuaMetaTgX primitives

36

Because a math formula is first read and then processed in several passes you need to
be aware of this state not always being easily predictable because there can be a delay
between that read and successive treatments.

\/——n

n

y

2.5.32 \ifmathparameter

The next example demonstrates what this test provides:

[\ifmathparameter\Umathextrasubspace \displaystyle zero\or set\else
unset\fi]

[\ifmathparameter\Umathaccentbaseheight\displaystyle zero\or set\else
unset\fi]

[\ifmathparameter\Umathaccentbasedepth \displaystyle zero\or set\else
unset\fi]

There are three possible outcomes; here we get: [zero] [set] [set]. In LuaMetaTgX we
have more math parameters than in LuaTgX, and some are set in font specific so called

‘goodie’ files.

2.5.33 \ifmathstyle

Here you need to keep in mind that you test the style that is set when TgX scans for
formula. Processing happens afterwards and then styles can change.

{\ifmathstyle D\or D'\or T\or T'\or S\or S'\or SS\or SS'\else ?\fi}
\im{\ifmathstyle D\or D'\or T\or T'\or S\or S'\or SS\or SS'\else ?\fi}
\dm{\ifmathstyle D\or D'\or T\or T'\or S\or S'\or SS\or SS'\else ?\fi}

We get: ? T D. The odd values are cramped.

2.5.34 \ifinalignment
This test is an experimental one:

\halign \bgroup
\aligncontent
\aligntab
\aligncontent

LuaMetaTgX primitives

37

\cr

one \aligntab \ifinalignment two\else three\fi \cr

\noalign{\ifinalignment yes\else no\fi}

one \aligntab \hbox{\ifinalignment two\else three\fi} \cr
\egroup

\hbox{\ifinalignment two\else three\fi}
We get:

one two
yes

one two
three

2.5.35 \ifinsert

This primitive checks if an insert box has content. Usage depends on the macro package
so for instance in ConTEXt, after \footnote{A note.} you can actually check it with:

\setupheadertexts[\ifinsert\namedinsertionnumber{footnote} Y\else N\fi]

You pass the number of a insert class and in this example the content, set by the page
builder, hasn't yet been flushed.

2.5.36 \ifflags

This one related to interfacing. When a macro is defined, one can apply several prefixes
to that macro. Some of these prefixes result in a specific kind of macro, for instance
a protected, tolerant, tolerant protected, or regular macro. When a macro is defined
global, its (internal) level value indicates that. In addition macros, or actually any con-
trol sequence, also the built-in ones, can have a set of flags. Some, have consequences
in the engine, so for instance an untraced macro will present itself as a primitive, with-
out details that clutter a log. Other flags get meaning when the overload protection
mechanisms are enabled.

Testing flags can give some insight but in ConTgXt there is little reason to use this test
other than for illustrative purposes. Take this definition

\global\protected\def\Foo{Foo}

This macro is internally represented as follows; here we used \meaningasis:

LuaMetaTgX primitives

38

\global \protected \def \Foo {Foo}

When we use \meaning we get:

protected macro:Foo

With \meaningfull we get:

global protected macro:Foo

Here is how you can test what properties and flags are set.

\ifflags\Foo\global global \fi
\ifflags\Foo\protected protected \fi
\ifflags\Foo\tolerant tolerant \fi

We only show a few tests here:
global protected
Instead of a prefix you can also pass a number:

\ifflags\relax\primitiveflagcode primitive \fi
\ifflags\relax\permanentflagcode permanent \fi

primitive

In ConTgXt many macros are defined as permanent which in terms of overload protec-
tion has the same impact. Relevant flag values are available in tex.getflagvalues()
but in ConTEXt we prefer predefined constants:

\aliasedflagcode, \conditionalflagcode, \constantflagcode, \deferredflag-
code, \frozenflagcode, \globalflagcode, \immediateflagcode, \immutableflag-
code, \inheritedflagcode, \instanceflagcode, \mutableflagcode, \noaligned-
flagcode, \overloadedflagcode, \permanentflagcode, \primitiveflagcode, \pro-
tectedflagcode, \semiprotectedflagcode, \tolerantflagcode, \untracedflag-
code, \valueflagcode

2.5.37 \ifparameters

This is an \ifcase where the number is the number of parameters passed to the current
macro. Of course, when used in a macro one should be aware of the fact that another
macro call will change this number.

LuaMetaTgX primitives

39

2.5.38 \ifparameter
This test checks if a parameter has been set, and it's used as follows:
\ifparameter#4\or set\else unset\fi

because #4 is actually a reference it refers to the parameter in the current macro and is
not influences by nested macro calls which makes if more reliable than a \ifparameters
test.

2.5.39 \orelse

This it not really a test primitive but it does act that way. Say that we have this:

\ifdim\scratchdimen>10pt
case 1
\else\ifdim\scratchdimen<20pt
case 2
\else\ifcount\scratchcounter>10
case 3
\else\ifcount\scratchcounter<20
case 4
\Fi\fi\fi\fi

A bit nicer looks this:

\ifdim\scratchdimen>10pt
case 1
\orelse\ifdim\scratchdimen<20pt
case 2
\orelse\ifcount\scratchcounter>10
case 3
\orelse\ifcount\scratchcounter<20
case 4
\fi

We stay at the same level. Sometimes a more flat test tree had advantages but if you
think that it gives better performance then you will be disappointed. The fact that we
stay at the same level is compensated by a bit more parsing, so unless you have millions
such cases (or expansions) it might make a bit of a difference. As mentioned, I'm a bit
sensitive for how code looks so that was the main motivation for introducing it. There
is a companion \orunless continuation primitive.

LuaMetaTgX primitives

40

A rather neat trick is the definition of \quitcondition:
\def\quitcondition{\orelse\iffalse}
This permits:

\ifdim\scratchdimen>10pt
case la
\quitcondition
case 4b

\fi

where, of course, the quitting normally is the result of some intermediate extra test.
But let me play safe here: beware of side effects.

2.5.40 \orunless

This is the negated variant of \orelse.

2.6 For the brave

2.6.1 Full expansion

If you don't understand the following code, don't worry. There is seldom much reason
to go this complex but obscure TgX code attracts some users so ...

When you have a macro that has for instance assignments, and when you expand that
macro inside an \edef, these assignments are not actually expanded but tokenized. In
LuaMetaTgX there is a way to apply these assignments without side effects and that
feature can be used to write a fully expandable user test. For instance:

\def\truecondition {\iftrue}
\def\falsecondition{\iffalse}

\def\fontwithidhaschar#1#2%
{\beginlocalcontrol
\scratchcounter\numexpr\fontid\font\relax
\setfontid\numexpr#l\relax
\endlocalcontrol
\iffontchar\font\numexpr#2\relax
\beginlocalcontrol

For the brave

41

\setfontid\scratchcounter

\endlocalcontrol

\expandafter\truecondition
\else

\expandafter\falsecondition
\fi}

The \iffontchar test doesn't handle numeric font id, simply because at the time it was
added to -TgX, there was no access to these id's. Now we can do:

\edef\foo{\fontwithidhaschar{1l} {75}yes\else nop\fi} \meaning\foo
\edef\foo{\fontwithidhaschar{1}{999}yes\else nop\fi} \meaning\foo

[\ifcondition\fontwithidhaschar{1l} {75}yes\else nop\fi]
[\ifcondition\fontwithidhaschar{1}{999}yes\else nop\fi]

These result in:

macro:yes
macro:nop

[yes]
[nop]

If you remove the \immediateassignment in the definition above then the typeset re-
sults are still the same but the meanings of \ foo look different: they contain the assign-
ments and the test for the character is actually done when constructing the content of
the \edef, but for the current font. So, basically that test is now useless.

2.6.2 User defined if's

There is a \newif macro that defines three other macros:
\newif\ifOnMyOwnTerms

After this, not only \1fOnMyOwnTerms is defined, but also:

\OnMyOwnTermstrue
\OnMyOwnTermsfalse

These two actually are macros that redefine \ifOnMyOwnTerms to be either equivalent
to \iftrue and \iffalse. The (often derived from plain TgX) definition of \newif is a

For the brave

42

bit if a challenge as it has to deal with removing the if in order to create the two extra
macros and also make sure that it doesn't get mixed up in a catcode jungle.

In ConTEXt we have a variant:
\newconditional\MyConditional
that can be used with:

\settrue\MyConditional
\setfalse\MyConditional

and tested like:

\ifconditional\MyConditional
\else

\fi

This one is cheaper on the hash and doesn't need the two extra macros per test. The
price is the use of \ifconditional, which is not to confused with \ifcondition (it has
bitten me already a few times).

2.7 Relaxing

When TgX scans for a number or dimension it has to check tokens one by one. On the
case of a number, the scanning stops when there is no digit, in the case of a dimension
the unit determine the end of scanning. In the case of a number, when a token is not a
digit that token gets pushed back. When digits are scanned a trailing space or \relax
is pushed back. Instead of a number of dimension made from digits, periods and units,
the scanner also accepts registers, both the direct accessors like \count and \dimen
and those represented by one token. Take these definitions:

\newdimen\MyDimenA \MyDimenA=1pt \dimenO=\MyDimenA
\newdimen\MyDimenB \MyDimenB=2pt \dimen2=\MyDimenB

I will use these to illustrate the side effects of scanning. Watch the spaces in the result.

First I show what effect we want to avoid. When second argument contains a number
(digits) the zero will become part of it so we actually check \dimen00 here.

\def\whatever#1#2%

Relaxing

43

{\ifdim#1=#20\elsel\fi}

\whatever{lpt}{2pt} [macro:1]
\whatever{lpt}{1lpt} [macro:0]
\whatever{\dimen 0}{\dimen 2} [macro:1]
\whatever{\dimen 0}{\dimen 0} [macro:]
\whatever\MyDimenA\MyDimenB [macro:1]
\whatever\MyDimenA\MyDimenB [macro:1]

The solution is to add a space but watch how that one can end up in the result:

\def\whatever#l#2%
{\ifdim#1=#2 0O\elsel\fi}

\whatever{lpt}{2pt} [macro:1]
\whatever{lpt}{1lpt} [macro:0]
\whatever{\dimen 0}{\dimen 2} [macro:1]
\whatever{\dimen 0}{\dimen 0} [macro:0]
\whatever\MyDimenA\MyDimenB [macro:1]
\whatever\MyDimenA\MyDimenB [macro:1]

A variant is using \relax and this time we get this token retained in the output.

\def\whatever#1#2%
{\ifdim#1=#2\relax0\elsel\fi}

\whatever{lpt}{2pt} [macro:1]
\whatever{lpt}{1lpt} [macro:\relax 0]
\whatever{\dimen 0}{\dimen 2} [macro:1]
\whatever{\dimen 0}{\dimen 0} [macro:\relax 0]
\whatever\MyDimenA\MyDimenB [macro:1]
\whatever\MyDimenA\MyDimenB [macro:1]

A solution that doesn't have side effects of forcing the end of a number (using a space or
\relax is one where we use expressions. The added overhead of scanning expressions
is taken for granted because the effect is what we like:

\def\whatever#1#2%
{\ifdim\dimexpr#1l\relax=\dimexpr#2\relax0\elsel\fi}

\whatever{lpt}{2pt} [macro:1]
\whatever{lpt}{1lpt} [macro:0]
\whatever{\dimen 0}{\dimen 2} [macro:1]

Relaxing

44

\whatever{\dimen 0}{\dimen 0} [macro:0]
\whatever\MyDimenA\MyDimenB [macro:1]
\whatever\MyDimenA\MyDimenB [macro:1]

Just for completeness we show a more obscure trick: this one hides assignments to
temporary variables. Although performance is okay, it is the least efficient one so far.

\def\whatever#1#2%
{\beginlocalcontrol
\MyDimenA#1\relax
\MyDimenB#2\relax
\endlocalcontrol
\ifdim\MyDimenA=\MyDimenB0O\elsel\fi}

\whatever{lpt}{2pt} [macro:1]
\whatever{lpt}{1lpt} [macro:0]
\whatever{\dimen 0}{\dimen 2} [macro:1]
\whatever{\dimen 0}{\dimen 0} [macro:0]
\whatever\MyDimenA\MyDimenB [macro:1]
\whatever\MyDimenA\MyDimenB [macro:1]

It is kind of a game to come up with alternatives but for sure those involve dirty tricks
and more tokens (and runtime). The next can be considered a dirty trick too: we use a
special variant of \relax. When a number is scanned it acts as relax, but otherwise it
just is ignored and disappears.

\def\whatever#l#2%
{\ifdim#1=#2\norelax0\elsel\fi}

\whatever{lpt}{2pt} [macro:1]
\whatever{lpt}{1lpt} [macro:0]
\whatever{\dimen 0}{\dimen 2} [macro:1]
\whatever{\dimen 0}{\dimen 0} [macro:0]
\whatever\MyDimenA\MyDimenB [macro:1]
\whatever\MyDimenA\MyDimenB [macro:1]

Relaxing

45

2.7 Colofon

Author Hans Hagen

ConTgXt 2025.02.19 14:35
LuaMetaTgX 2.11.07 ‘ 20250219
Support www.pragma-ade.com

contextgarden.net
ntg-context@ntg.nl

Colofon

3 Boxes

46

low level

1EX

boxes

=
|

=

=3

i eft,akaraggedrlght, ,,,,,,,,, L. L, akasgﬁaggemraght,-noo Ri0.00
__ap,pr,QaC,h ,,, [:Ebiggdapproa‘Ch.mg ,, 200

47

Contents

3.1 Introduction 47
3.2 Boxes 47
3.3 TgX primitives 48
3.4 &-TgX primitives 51
3.5 LuaTgX primitives 51
3.6 LuaMetalgX primitives 52
3.7 Splitting 60

3.1 Introduction

An average ConIgXt user will not use the low level box primitives but a basic under-
standing of how TgX works doesn't hurt. In fact, occasionally using a box command
might bring a solution not easily achieved otherwise, simply because a more high level
interface can also be in the way.

The best reference is of course The TgXbook so if you're really interested in the details
you should get a copy of that book. Below I will not go into details about all kind of
glues, kerns and penalties, just boxes it is.

This explanation will be extended when I feel the need (or users have questions that
can be answered here).

3.2 Boxes

This paragraph of text is made from lines that contain words that themselves contain
symbolic representations of characters. Each line is wrapped in a so called horizontal
box and eventually those lines themselves get wrapped in what we call a vertical box.

When we expose some details of a paragraph it looks like this:

] — \RHOOOO
paragraph blownupa & .ﬁgg@gragraphsp blownsguzpﬁpa- oy pom

15:0.000p3 156,08 b ok v.Chip) Ri:0.000
BS:7.007

5:0.000

Introduction

48

The left only shows the boxes, the variant at the right shows (font) kerns and glue too.
Because we flush left, there is rather strong right skip glue at the right boundary of the
box. If font kerns show up depends on the font, not all fonts have them (or have only a
few). The glyphs themselves are also kind of boxed, as their dimensions determine the
area that they occupy:

This 1s a rather ...

But, internally they are not really boxed, as they already are a single quantity. The same
is true for rules: they are just blobs with dimensions. A box on the other hand wraps
a linked list of so called nodes: glyphs, kerns, glue, penalties, rules, boxes, etc. It is a
container with properties like width, height, depth and shift.

3.3 TgX primitives

The box model is reflected in TEX's user interface but not by that many commands, most
noticeably \hbox, \vbox and \vtop. Here is an example of the first one:

\hbox width 10cm{text}
\hbox width 10cm height 1cm depth 5mm{text}
text \raise5Smm\hbox{text} text

The \raise and \lower commands behave the same but in opposite directions. One
could as well have been defined in terms of the other.

text \raise 5mm \hbox to 2cm {text}
text \lower -5mm \hbox to 2cm {text}
text \raise -5mm \hbox to 2cm {text}
text \lower 5mm \hbox to 2cm {text}

Jtext | text |
text text text text

A box can be moved to the left or right but, believe it or not, in ConTEXt we never use
that feature, probably because the consequences for the width are such that we can as
well use kerns. Here are some examples:

text \vbox{\moveleft 5mm \hbox {left}}text !
text \vbox{\moveright 5mm \hbox{right}}text !

TEX primitives

left

49

teldfttext ! text righttext !

text \vbox{\moveleft 25mm \hbox {left}}text !
text \vbox{\moveright 25mm \hbox{right}}text !

text text ! text righttext !

Code like this will produce a complaint about an underfull box but we can easily get
around that:

text \raise 5mm \hbox to 2cm {\hss text}
text \lower -5mm \hbox to 2cm {text\hss}
text \raise -5mm \hbox to 2cm {\hss text}
text \lower 5mm \hbox to 2cm {text\hss}

The \hss primitive injects a glue that when needed will fill up the available space. So,
here we force the text to the right or left.

text text text text

Instead of \raise you can also provide the shift (up or down) with a keyword:

\ruledhbox\bgroup
x\raise 5pt\ruledhbox {1}x
x\raise-10pt\ruledhbox {2}x
x\raise -5pt\ruledhbox shift -20pt{3}x
x\ruledhbox shift -10pt{4}x
\egroup
3 4
Iy x xx xx% X
2

We have three kind of boxes: \hbox, \vbox and \vtop. Actually we have a fourth type
\dbox but that is a variant on \vbox to which we come back later.

\hbox{\strut height and depth\strut}
\vbox{\hsize 4cm \strut height and depth\par and width\strut}
\vtop{\hsize 4cm \strut height and depth\par and width\strut}

A \vbox aligns at the bottom and a \vtop at the top. I have added some so called struts
to enforce a consistent height and depth. A strut is an invisible quantity (consider it a
black box) that enforces consistent line dimensions: height and depth.

TEX primitives

50

.lheight and depth

”,]h,eight,,,and,,d,e,p,thLand width! |height and depth

-and width|

You can store a box in a register but you need to be careful not to use a predefined one.
If you need a lot of boxes you can reserve some for your own:

\newbox\MySpecialBox

but normally you can do with one of the scratch registers, like 0, 2, 4, 6 or 8, for local
boxes, and 1, 3, 5, 7 and 9 for global ones. Registers are used like:

\setbox@\hbox{here}
\global\setbox1\hbox{there}

In ConTEXt you can also use

\setbox\scratchbox \hbox{here}
\setbox\scratchboxone\hbox{here}
\setbox\scratchboxtwo\hbox{here}

and some more. In fact, there are quite some predefined scratch registers (boxes, di-
mensions, counters, etc). Feel free to investigate further.

When a box is stored, you can consult its dimensions with \wd, \ht and \dp. You can of
course store them for later use.

\scratchwidth \wd\scratchbox
\scratchheight\ht\scratchbox

\scratchdepth \dp\scratchbox

\scratchtotal \dimexpr\ht\scratchbox+\dp\scratchbox\relax
\scratchtotal \htdp\scratchbox

The last line is ConTgXt specific. You can also set the dimensions

\wd\scratchbox 10cm
\ht\scratchbox 10mm
\dp\scratchbox 5mm

So you can cheat! A box is placed with \copy, which keeps the original intact or \box
which just inserts the box and then wipes the register. In practice you seldom need a

TEX primitives

51

copy, which is more expensive in runtime anyway. Here we use copy because it serves
the examples.

\copy\scratchbox
\box \scratchbox

3.4 e-IgX primitives

The e-TEX extensions don't add something relevant for boxes, apart from that you can
use the expressions mechanism to mess around with their dimensions. There is a mech-
anism for typesetting r2l within a paragraph but that has limited capabilities and doesn't
change much as it's mostly a way to trick the backend into outputting a stretch of text in
the other direction. This feature is not available in LuaTgX because it has an alternative
direction mechanism.

3.5 LualgX primitives

The concept of boxes is the same in LuaTgX as in its predecessors but there are some
aspects to keep in mind. When a box is typeset this happens in LuaTgX:

1. A list of nodes is constructed. In LuaTgX this is a double linked list (so that it can
easily be manipulated in Lua) but TgX itself only uses the forward links.

2. That list is hyphenated, that is: so called discretionary nodes are injected. This
depends on the language properties of the glyph (character) nodes.

3. Then ligatures are constructed, if the font has such combinations. When this built-in
mechanism is used, in ConTEXt we speak of base mode.

4. After that inter-character kerns are applied, if the font provides them. Again this is
a base mode action.

5. Finally the box gets packaged:

- In the case of a horizontal box, the list is packaged in a hlist node, basically one
liner, and its dimensions are calculated and set.

- In the case of a vertical box, the paragraph is broken into one or more lines, with-
out hyphenation, with optimal hyphenation or in the worst case with so called
emergency stretch applied, and the result becomes a vlist node with its dimen-
sions set.

e-IgX primitives

52

In traditional TgX the first four steps are interwoven but in LuaTgX we need them split
because the step 5 can be overloaded by a callback. In that case steps 3 and 4 (and
maybe 2) are probably also overloaded, especially when you bring handling of fonts
under Lua control.

New in LuaTgX are three packers: \hpack, \vpack and \tpack, which are companions
to \hbox, \vbox and \vtop but without the callbacks applied. Using them is a bit tricky
as you never know if a callback should be applied, which, because users can often add
their own Lua code, is not something predictable.

Another box related extension is direction. There are four possible directions but be-
cause in LuaMetaTgX there are only two. Because this model has been upgraded, it will
be discusses in the next section. A ConTgXt user is supposed to use the official ConTgXt
interfaces in order to be downward compatible.

3.6 LuaMeta’IlgX primitives

There are two possible directions: left to right (the default) and right to left for Hebrew
and Arabic. Here is an example that shows how it'd done with low level directives:

\hbox direction 0 {from left to right}
\hbox direction 1 {from right to left}

from left to right
tfel ot thgir morf

A low level direction switch is done with:

\hbox direction 0

{from left to right \textdirection 1 from right to left}
\hbox direction 1

{from right to left \textdirection 1 from left to right}

from left to right tfel ot thgir morf
thgir ot tfel morf tfel ot thgir morf

but actually this is kind of not done in ConTgXt, because there you are supposed to use
the proper direction switches:

\naturalhbox {from left to right}
\reversehbox {from right to left}
\naturalhbox {from left to right \righttoleft from right to left}

LuaMetaTgX primitives

53

\reversehbox {from right to left \lefttoright from left to right}

from left to right
tfel ot thgir morf
from left to right tfel ot thgir morf
from left to right tfel ot thgir morf

Often more is needed to properly support right to left typesetting so using the ConTgXt
commands is more robust.

In LuaMetaTgX the box model has been extended a bit, this as a consequence of drop-
ping the vertical directional typesetting, which never worked well. In previous sections
we discussed the properties width, height and depth and the shift resulting from a
\raise, \lower, \moveleft and \moveright. Actually, the shift is also used in for in-
stance positioning math elements.

The way shifting influences dimensions can be somewhat puzzling. Internally, when
TEX packages content in a box there are two cases:

* When a horizontal box is made, and height - shift is larger than the maximum
height so far, that delta is taken. When depth + shift is larger than the current
depth, then that depth is adapted. So, a shift up influences the height and a shift
down influences the depth.

* In the case of vertical packaging, when width + shift is larger than the maximum
box (line) width so far, that maximum gets bumped. So, a shift to the right can
contribute, but a shift to the left cannot result in a negative width. This is also why
vertical typesetting, where height and depth are swapped with width, goes wrong:
we somehow need to map two properties onto one and conceptually TgX is really
set up for horizontal typesetting. (And it's why I decided to just remove it from the
engine.)

This is one of these cases where TEX behaves as expected but it also means that there is
some limitation to what can be manipulated. Setting the shift using one of the four com-
mands has a direct consequence when a box gets packaged which happens immediately
because the box is an argument to the foursome.

There is in traditional TEX, probably for good reason, no way to set the shift of a box,
if only because the effect would normally be none. But in LuaTgX we can cheat, and
therefore, for educational purposed ConTgXt has implements some cheats.

We use this sample box:

LuaMetaTgX primitives

54

\sethox\scratchbox\hbox\bgroup
\middlegray\vrule width 20mm depth -.5mm height 10mm
\hskip-20mm
\darkgray \vrule width 20mm height -.5mm depth 5mm
\egroup

When we mess with the shift using the ConTgXt \shiftbox helper, we see no immediate
effect. We only get the shift applied when we use another helper, \hpackbox.

\hbox\bgroup
\showstruts \strut
\quad \copy\scratchbox
\quad \shiftbox\scratchbox -20mm \copy\scratchbox
\quad \hpackbox\scratchhox \box \scratchbox
\quad \strut

\egroup

When instead we use \vpackbox we get a different result. This time we move left.

\hbox\bgroup
\showstruts \strut
\quad \copy\scratchbox
\quad \shiftbox\scratchbox -10mm \copy\scratchbox
\quad \vpackbox\scratchbox \copy\scratchbox
\quad \strut

\egroup

The shift is set via Lua and the repackaging is also done in Lua, using the low level
hpack and vpack helpers and these just happen to look at the shift when doing their
job. At the TgX end this never happens.

LuaMetaTgX primitives

55

This long exploration of shifting serves a purpose: it demonstrates that there is not
that much direct control over boxes apart from their three dimensions. However this
was never a real problem as one can just wrap a box in another one and use kerns
to move the embedded box around. But nevertheless I decided to see if the engine
can be a bit more helpful, if only because all that extra wrapping gives some overhead
and complications when we want to manipulate boxes. And of course it is also a nice
playground.

We start with changing the direction. Changing this property doesn't require repackag-
ing because directions are not really dealt with in the frontend. When a box is converted
to (for instance pdf) the reversion happens.

\setbox\scratchbox\hbox{whatever}
\the\boxdirection\scratchbox: \copy\scratchbox \crlf
\boxdirection\scratchbox 1
\the\boxdirection\scratchbox: \copy\scratchbox

0: whatever
1: revetahw

Another property that can be queried and set is an attribute. In order to get a private
attribute we define one.

\newattribute\MyAt

\setbox\scratchbox\hbox attr \MyAt 123 {whatever}
[\the\boxattribute\scratchbox\MyAt]
\boxattribute\scratchbox\MyAt 456
[\the\boxattribute\scratchbox\MyAt]
[\ifnum\boxattribute\scratchbox\MyAt>400 okay\fi]

[123] [456] [okay]

The sum of the height and depth is available too. Because for practical reasons setting
that property is also needed then, the choice was made to distribute the value equally
over height and depth.

\setbox\scratchbox\hbox {height and depth}
[\the\ht\scratchbox]

[\the\dp\scratchbox]
[\the\boxtotal\scratchbox]
\boxtotal\scratchbox=20pt
[\the\ht\scratchbox]

LuaMetaTgX primitives

56

[\the\dp\scratchbox]
[\the\boxtotal\scratchbox]

[8.35742pt] [2.44385pt] [10.80127pt] [10.0pt] [10.0pt] [20.0pt]

We've now arrived to a set of properties that relate to each other. They are a bit complex
and given the number of possibilities one might need to revert to some trial and error:
orientations and offsets. As with the dimensions, directions and attributes, they are
passed as box specification. We start with the orientation.

\hbox \bgroup \showboxes
\hbox orientation 0 {right}
\quad \hbox orientation 1 {up}
\quad \hbox orientation 2 {left}
\quad \hbox orientation 3 {down}
\egroup

down

right &

When the orientation is set, you can also set an offset. Where shifting around a box
can have consequences for the dimensions, an offset is virtual. It gets effective in the
backend, when the contents is converted to some output format.

\hbox \bgroup \showboxes
\hbox orientation 0 yoffset 10pt {right}
\quad \hbox orientation 1 xoffset 10pt {up}
\quad \hbox orientation 2 yoffset -10pt {left}
\quad \hbox orientation 3 xoffset -10pt {down}
\egroup

own

right -
n el sl
ol
The reason that offsets are related to orientation is that we need to know in what di-
rection the offsets have to be applied and this binding forces the user to think about it.
You can also set the offsets using commands.

\setbox\scratchbox\hbox{whatever}s
1 \copy\scratchbox
2 \boxorientation\scratchbox 2 \copy\scratchbox

LuaMetaTgX primitives

57

3 \boxxoffset \scratchbox -15pt \copy\scratchbox
4 \boxyoffset \scratchbox -15pt \copy\scratchbox
5

Lwhatever2 o o003 oroum 45

\setbox\sc ratchboxone\hbox{vﬂ‘f’é\?élsg?“}%
\setbhox\scratchboxtwo\hbox{whatever}s

<

1 \boxxoffset \scratchboxone -15pt \copy\scratchboxone

2 \boxyoffset \scratchboxone -15pt \copy\scratchboxone

3 \boxxoffset \scratchboxone -15pt \copy\scratchboxone

4 \boxyoffset \scratchboxone -15pt \copy\scratchboxone

5 \boxxmove \scratchboxtwo -15pt \copy\scratchboxtwo

6 \boxymove \scratchboxtwo -15pt \copy\scratchboxtwo

7 \boxxmove \scratchboxtwo -15pt \copy\scratchboxtwo

8 \boxymove \scratchboxtwo -15pt \copy\scratchboxtwo

pthatever 2 3 4 vbhatever6t 7 8
whatever whatever whatever whatewdmatever

whatever

The move commands are provides as convenience and contrary to the offsets they do
adapt the dimensions. Internally, with the box, we register the orientation and the off-
sets and when you apply these commands multiple times the current values get over-
written. But ... because an orientation can be more complex you might not get the
effects you expect when the options we discuss next are used. The reason is that we
store the original dimensions too and these come into play when these other options
are used: anchoring. So, normally you will apply an orientation and offsets once only.

The orientation specifier is actually a three byte number that best can be seen hexa-
decimal (although we stay within the decimal domain). There are three components:
x-anchoring, y-anchoring and orientation:

Ox<X><Y><0>
or in TEX speak:
"<X><Y><0>

The landscape and seascape variants both sit on top of the baseline while the flipped
variant has its depth swapped with the height. Although this would be enough a bit
more control is possible.

LuaMetaTgX primitives

58

The vertical options of the horizontal variants anchor on the baseline, lower corner,
upper corner or center.

\ruledhbox orientation "002 {\TEX} and
\ruledhbox orientation "012 {\TEX} and
\ruledhbox orientation "022 {\TEX} and
\ruledhbox orientation "032 {\TEX}

r and X4l and ___and yay

The horizontal options of the horizontal variants anchor in the center, left, right, halfway
left and halfway right.

\ruledhbox orientation "002 {\TEX} and
\ruledhbox orientation "102 {\TEX} and
\ruledhbox orientation "202 {\TEX} and
\ruledhbox orientation "302 {\TEX} and
\ruledhbox orientation "402 {\TEX}
,,,,,,,,,,,,,,,,,,,,,,,,, _and |

The orientation has consequences for the dimensions so they are dealt with in the ex-
pected way in constructing lines, paragraphs and pages, but the anchoring is virtual,
like the offsets. There are two extra variants for orientation zero: on top of baseline or

below, with dimensions taken into account.

\ruledhbox orientation "000 {\TEX} and
\ruledhbox orientation "004 {\TEX} and
\ruledhbox orientation "005 {\TEX}

TeX and TEX and __
TeX

The anchoring can look somewhat confusing but you need to keep in mind that it is
normally only used in very controlled circumstances and not in running text. Wrapped
in macros users don't see the details. We're talking boxes here, so for instance:

test\quad

\hbox orientation 3 \bgroup

\strut test\hbox orientation "002 \bgroup\strut test\egroup test%
\egroup \quad
\hbox orientation 3 \bgroup

\strut test\hbox orientation "002 \bgroup\strut test\egroup test%

LuaMetaTgX primitives

\egroup \quad

\hbox orientation 3 \bgroup
\strut test\hbox orientation

\egroup \quad

\hbox orientation 3 \bgroup
\strut test\hbox orientation

\egroup \quad

\hbox orientation 3 \bgroup
\strut test\hbox orientation

\egroup \quad

\hbox orientation 3 \bgroup
\strut test\hbox orientation

59

"012 \bgroup\strut test\egroup test%

"022 \bgroup\strut test\egroup test%

"032 \bgroup\strut test\egroup test%

"042 \bgroup\strut test\egroup test%

\egroup
\quad test
=] =] F=] = =] =]
wn (7] (7] wn [72] 7]
Q Q Q Q () Q
=) = + =)
+ t+ + (g (g +
D D D (¢} [¢2] D
97] 97] 9] 97] 2] 9]
t+ t+ t+ t+ t+ (s
-+ -+ -+ - =+ -+
Q 3 3 3 3 o
test oS - - - - - test

Where a \vtop has the baseline at the top, a \vbox has it at the bottom. In LuaMeta-

TEX we also have a \dbox, which is a
appended to a vertical list: the height

\vbox with that behaves like a \vtop when it's
of the first box or rule determines the (base)line

correction that gets applied. The following example demonstrates this:

AXXXXXXXXXXXXXXX
e thrive in information-thick worlds be-

cause of our marvelous and everyday ca-
pacity to select, edit, single out, struc-
ture, highlight, group, pair, merge, har-
monize, synthesize, focus, organize, con-
dense, reduce, boil down, choose, cat-
egorize, catalog, classify, list, abstract,
scan, look into, idealize, isolate, discrim-
inate, distinguish, screen, pigeonhole,
pick over, sort, integrate, blend, inspect,
filter, lump, skip, smooth, chunk, av-
erage, approximate, cluster, aggregate,
outline, summarize, itemize, review, dip
into, flip through, browse, glance into,
leaf through, skim, refine, enumerate,
glean, synopsize, winnow the wheat from
the chaff and separate the sheep from the
goats

XXXXXXXXXXXXXXXX

\vbox

The d stands for ‘dual’ because we (sort of) have two baselines. The regular height and

depth are those of a \vbox.

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

e thrive in information-thick worlds be-

e thrive in information-thick worlds be-

cause of our marvelous and everyday ca-
pacity to select, edit, single out, struc-
ture, highlight, group, pair, merge, har-
monize, synthesize, focus, organize, con-
dense, reduce, boil down, choose, cat-
egorize, catalog, classify, list, abstract,
scan, look into, idealize, isolate, discrim-
inate, distinguish, screen, pigeonhole,
pick over, sort, integrate, blend, inspect,
filter, lump, skip, smooth, chunk, av-
erage, approximate, cluster, aggregate,
outline, summarize, itemize, review, dip
into, flip through, browse, glance into,
leaf through, skim, refine, enumerate,
glean, synopsize, winnow the wheat from
the chaff and separate the sheep from the

goats.

cause of our marvelous and everyday ca-
pacity to select, edit, single out, struc-
ture, highlight, group, pair, merge, har-
monize, synthesize, focus, organize, con-
dense, reduce, boil down, choose, cat-
egorize, catalog, classify, list, abstract,
scan, look into, idealize, isolate, discrim-
inate, distinguish, screen, pigeonhole,
pick over, sort, integrate, blend, inspect,
filter, lump, skip, smooth, chunk, av-
erage, approximate, cluster, aggregate,
outline, summarize, itemize, review, dip
into, flip through, browse, glance into,
leaf through, skim, refine, enumerate,
glean, synopsize, winnow the wheat from
the chaff and separate the sheep from the
goats

XXXXXXXXXXXXXXXX

\vtop

LuaMetaTgX primitives

XXXXXXXXXXXXXXXX

\dbox

60

3.7 Splitting

When you feed TEX a paragraph of text it will accumulate the content in a list of nodes.
When the paragraphs is finished by \par or an empty line it will be fed into the par
builder that will try to break the lines as good as possible. Normally that paragraph
will be added to the page and at some point there can be breaks between lines in order
not to overflow the page. When you collect the paragraph in a box you can use \vsplit
to emulate this.

\setbox\scratchbox\vbox{\samplefile{tufte}}

\startlinecorrection
\ruledhbox{\vsplit\scratchbox to 2\lineheight}
\stoplinecorrection

e thrive in information-thick worlds because of our marvelous and everyday capacity
to select, edit, single out, structure, highlight, group, pair, merge, harmonize, synthe-

The split off box is given the specified height, but in LuaMetaTgX you can also get the
natural dimensions:

\setbox\scratchbox\vbox{\samplefile{tufte}}

\startlinecorrection
\ruledhbox{\vsplit\scratchbox upto 2\lineheight}
\stoplinecorrection

e thrive in information-thick worlds because of our marvelous and everyday capacity
to select, edit, single out, structure, highlight, group, pair, merge, harmonize, synthe-

We can force a resulting box type by using \vsplit, \tsplit and \dsplit (here we use
the visualized variants):

\setbox\scratchbox\vbox{\samplefile{tufte}}

\startlinecorrection
\ruledtsplit \scratchbox upto 2\lineheight
\stoplinecorrection

e thrive in information-thick worlds because of our marvelous and everyday capacity
to select, edit, single out, structure, highlight, group, pair, merge, harmonize, synthe-

\setbox\scratchbox\vbox{\samplefile{tufte}}

Splitting

61

\startlinecorrection
\ruledvsplit \scratchbox upto 2\lineheight
\stoplinecorrection

e thrive in information-thick worlds because of our marvelous and everyday capacity
to select, edit, single out, structure, highlight, group, pair, merge, harmonize, synthe-

\setbox\scratchbox\vbox{\samplefile{tufte}}

\startlinecorrection
\ruleddsplit \scratchbox upto 2\lineheight
\stoplinecorrection

e thrive in information-thick worlds because of our marvelous and everyday capacity
to select, edit, single out, structure, highlight, group, pair, merge, harmonize, synthe-

The engine provides vertical splitters but ConTgXt itself also has a horizontal one.!

\starttexdefinition Test #1#2#3
\par
\dontleavehmode
\strut
\llap{{\infofont #2}\quad}
\blackrule[width=#2, color=darkblue]

\par
\setbox\scratchbox\hbox{\samplefile{#1}}
\hsplit\scratchbox
to #2
depth \strutdp
height \strutht
shrinkcriterium #3 % badness
\par
\stoptexdefinition

\dostepwiserecurse {100} {120} {2} {
\Test{tufte}{#1mm} {1000}
\Test{tufte}{#1mm}{-100}

}

100mm |
We thrive in information-thick worlds because of

1 At some point I might turn that one into a native engine primitive.

Splitting

100mm

102mm

102mm

104mm

104mm

106mm

106mm

108mm

108mm

110mm

110mm

112mm

112mm

114mm

114mm

116mm

116mm

118mm

118mm

120mm

62

A HEBEEBEEEHEBEEEHEEHEE
t t —+ t t ot —t —+ t t —t
= = = =3
) o, o s o 3 o p o 3 @ o o
A EEREHEHEEEEHE
) =] e -] = =] 5 -] =]] B
sl ENZERS0Ecls
] 5 =] o] S)] =] =] E =]
8 5 =] 3 8 5 =] = 8 8 8 5 =]
S = 0 = S 2 D S S S = S
- 5 =y < my 8 = o+ m mp = 5 &

— ot -
A HHEHHEHEHEHEE
o & o S ar i o i ar ot o o o
1IHHHHEBEHHHEEBHE
- 2‘ - c; A Y Ed B2 Bl Bl R g B
s S s = s < = s s S s
S S o = S s o S) o) o = o
2020302002020z 0=2=0z=201z20:z
o - Il B N =N o IS B Bl oW B RS
w0 7 -~ 7] o, wn %)) wn %)
(o (77}
BN Bl B2 BE 4 B =3 Bd Ed X B
) e o)) o o) 2) o)) &)
N EE EE B B R -
c & = O = 3 = = = = = 7 =
%) o) » Q » c 0 5 ») %) o) »
) i) =) & @ @))) 3)
o h o b o @ o) o o o h o
Fh o h Fh o h =3 Fh h Fh o —h
AHHEBEERBEBEBEBEEBEE
H 5 H o = S H = ~ H H
E§) o =
m = o
Qo

1015050503
t —+ —t+ —+ —+ ot
A Ed B = E
' < =3 < < < <
o) é ® c<D o)
12102 ELE)E
. =] =) =] =) =] B
=]
Sl BEE BEE BE EEl B
= = =)] =] =
AL ER R ER R
2 Y Bl EX B B
. o 4 o o o)
o =X B B B o
|
A =1 A A E
. o = o o o o
~ = ~ = = ~
@] (@) o o (@)
szl
o o o o o
Y BN EE N Bl B
o
o] @] Q Q Q Q
c o)) c c c c
w0 c w0 7 7] 2]
o) » D ® o) @
o @ o o o o
= o mh ~h ™ =
o =h o o o @]
c o o = c o
= c] = = =
=l lzlz=0z0¢
N =N N EE EE B
' Eg 1 hj ' 1

5
—+
=
=
2
3
5
5
S
S
=
Q
f
0
i
—+
=
S
2)
g
S
=
o
95]
o
&
S
Q
c
[92]
@
o
S,
o
=
£
=
Q
5

Splitting

120mm

100mm

63

|
We thrive in information-thick worlds because of our mar-

A split off box gets packed at its natural size and a badness as well as overshoot amount
is calculated. When the overshoot is positive and the the badness is larger than the
stretch criterium, the box gets repacked to the natural size. The same happens when
the overshoot is negative and the badness exceeds the shrink criterium. When the
overshoot is zero (basically we have a fit) but the badness still exceeds the stretch or
shrink we also repack. Indeed this is a bit fuzzy, but so is badness.

\starttexdefinition Test #1#2#3
\par
\dontleavehmode
\strut
\llap{{\infofont #2}\quad}
\blackrule[width=#2,color=darkblue]

\par
\setbox\scratchbox\hbox{\samplefile{#1}}
\doloop {
\ifvoid\scratchbox
\exitloop
\else
\hsplit\scratchbox
to #2
depth \strutdp
height \strutht
#3
\par
\allowbreak
\fi
}
\stoptexdefinition

\Test{tufte}{100mm}{shrinkcriterium 1000}
\Test{tufte}{100mm}{shrinkcriterium 0}
\Test{tufte}{100mm}{}

-
We thrive in information-thick worlds because of
our marvelous and everyday capacity to select, edit,
single out, structure, highlight, group, pair, merge,

Splitting

100mm

100mm

64

harmonize, synthesize, focus, organize, condense,
reduce, boil down, choose, categorize, catalog,
classify, list, abstract, scan, look into, idealize, iso-
late, discriminate, distinguish, screen, pigeonhole,
pick over, sort, integrate, blend, inspect, filter,
lump, skip, smooth, chunk, average, approximate,
cluster, aggregate, outline, summarize, itemize, re-
view, dip into, flip through, browse, glance into, leaf
through, skim, refine, enumerate, glean, synop-
size, winnow the wheat from the chaff and separate
the sheep from the goats.

]
We thrive in information-thick worlds because of
our marvelous and everyday capacity to select, edit,
single out, structure, highlight, group, pair, merge,
harmonize, synthesize, focus, organize, condense,
reduce, boil down, choose, categorize, catalog,
classify, list, abstract, scan, look into, idealize, iso-
late, discriminate, distinguish, screen, pigeonhole,
pick over, sort, integrate, blend, inspect, filter,
lump, skip, smooth, chunk, average, approximate,
cluster, aggregate, outline, summarize, itemize, re-
view, dip into, flip through, browse, glance into, leaf
through, skim, refine, enumerate, glean, synop-
size, winnow the wheat from the chaff and separate
the sheep from the goats.

|
We thrive in information-thick worlds because of
our marvelous and everyday capacity to select, edit,
single out, structure, highlight, group, pair, merge,
harmonize, synthesize, focus, organize, condense,
reduce, boil down, choose, categorize, catalog,
classify, list, abstract, scan, look into, idealize, iso-
late, discriminate, distinguish, screen, pigeonhole,
pick over, sort, integrate, blend, inspect, filter,
lump, skip, smooth, chunk, average, approximate,
cluster, aggregate, outline, summarize, itemize, re-
view, dip into, flip through, browse, glance into, leaf
through, skim, refine, enumerate, glean, synop-

Splitting

65

BBB
size, winnow the wheat from the chaff and separate
the sheep from the goats.

Watch how the last line get stretched when we set the criterium to zero. I'm sure that
users will find reasons to abuse this effect.

3.7 Colofon

Author Hans Hagen

ConTgXt 2025.02.19 14:35
LuaMetaTgX 2.11.07 ‘ 20250219
Support www.pragma-ade.com

contextgarden.net
ntg-context@ntg.nl

111111
XXX

222222

Colofon

4 Expansion

66

low level

1EX

expansion

67

Contents

4.1 Preamble 67
4.2 TgX primitives 67
4.3 &-TgX primitives 72
4.4 LuaTgX primitives 74
4.5 LuaMetaTgX primitives 75
4.6 Dirty tricks 85

4.1 Preamble

This short manual demonstrates a couple of properties of the macro language. It is
not an in-depth philosophical expose about macro languages, tokens, expansion and
such that some TgXies like. I prefer to stick to the practical aspects. Occasionally it
will be technical but you can just skip those paragraphs (or later return to them) when
you can't follow the explanation. It's often not that relevant. I won't talk in terms of
mouth, stomach and gut the way the TgXbook does and although there is no way to
avoid the word ‘token’ I will do my best to not complicate matters by too much token
speak. Examples show best what we mean.

4.2 TgX primitives

The TgX language provides quite some commands and those built in are called prim-
itives. User defined commands are called macros. A macro is a shortcut to a list of
primitives and/or macro calls. All can be mixed with characters that are to be typeset
somehow.

\def\MyMacro{b}
a\MyMacro c

When TgX reads this input the a gets turned into a glyph node with a reference to the
current font set and the character a. Then the parser sees a macro call, and it will enter
another input level where it expands this macro. In this case it sees just an b and it will
give this the same treatment as the a. The macro ends, the input level decrements and
the c gets its treatment.

Before we move on to more examples and differences between engines, it is good to
stress that \MyMacro is not a primitive command: we made our command here. The b
actually can be seen as a sort of primitive because in this macro it gets stored as so

Preamble

68

called token with a primitive property. That primitive property can later on be used to
determine what to do. More explicit examples of primitives are \hbox, \advance and
\relax. It will be clear that ConTEXt extends the repertoire of primitive commands
with a lot of macro commands. When we typeset a source using module m-scite the
primitives come out dark blue.

The amount of primitives differs per engine. It all starts with TgX as written by Don
Knuth. Later ¢-TgX added some more primitives and these became official extensions
adopted by other variants of TgX. The pdfTgX engine added quite some and as follow up
on that LuaTgX added more but didn't add all of pdfTgX. A few new primitives came from
Omega (Aleph). The LuaMetaTgX engine drops a set of primitives that comes with Lua-
TEX and adds plenty new ones. The nature of this engine (no backend and less frontend)
makes that we need to implement some primitives as macros. But the basic set is what
good old TgX comes with.

Internally these so called primitives are grouped in categories that relate to their na-
ture. They can be directly expanded (a way of saying that they get immediately inter-
preted) or delayed (maybe stored for later usage). They can involve definitions, calcula-
tions, setting properties and values or they can result in some typesetting. This is what
makes TgX confusing to new users: it is a macro programming language, an interpreter
but at the same time an executor of typesetting instructions.

A group of primitives is internally identified as a command (they have a cmd code) and
the sub commands are flagged by their chr code. This sounds confusing but just thing
of the fact that most of what we input are characters and therefore they make up most
sub commands. For instance the ‘letter cmd’ is used for characters that are seen as
letters that can be used in the name of user commands, can be typeset, are valid for
hyphenation etc. The letter related cmd can have many chr codes (all of Unicode). I'd
like to remark that the grouping is to a large extend functional, so sometimes primitives
that you expect to be similar in nature are in different groups. This has to do with the
fact that TEX needs to be a able to determine efficiently if a primitive is operating (or
forbidden) in horizontal, vertical and/or math mode.

There are more than 150 internal cmd groups. if we forget about the mentioned char-
acter related ones, some, have only a few sub commands (chr) and others many more
(just consider all the OpenType math spacing related parameters). A handful of these
commands deal with what we call macros: user defined combinations of primitives and
other macros, consider them little programs. The \MyMacro example above is an ex-
ample. There are differences between engines. In standard TgX there are \outer and
\long commands, and most engines have these. However, in LuaMetaTgX the later to
be discussed \protected macros have their own specific ‘call cmd’. Users don't need to
bother about this.

TEX primitives

69

So, when from now on we talk about primitives, we mean the built in, hard coded com-
mands, and when we talk about macros we mean user commands. Although internally
there are less cmd categories than primitives, from the perspective of the user they are
all unique. Users won't consult the source anyway but when they do they are warned.
Also, when in LuaMetaTgX you use the low level interfacing to TgX you have to figure
out these subtle aspects because there this grouping does matter.

Before we continue I want to make clear that expansion (as discussed in this document)
can refer to a macro being expanded (read: its meaning gets injected into the input, so
the engine kind of sidetracks from what is was doing) but also to direct consequences
of running into a primitive. However, users only need to consider expansion in the
perspective of macros. If a user has \advance in the input it immediately gets done.
But when it's part of a macro definition it only is executed when the macro expands. A
good check in (traditional) TgX is to compare what happens in \def and \edef which
is why we will use these two in the upcoming examples. You put something in a macro
and then check what \meaning or \show reports.

Now back to user defined macros. A macro can contain references to macros so in
practice the input can go several levels up and some applications push back a lot so
this is why your TgX input stack can be configured to be huge.

\def\MyMacroA{ and }
\def\MyMacroB{1\MyMacroA 2}

a\MyMacroA b

When \MyMacroB is defined, its body gets three so called tokens: the character token 1
with property ‘other’, a token that is a reference to the macro \MyMacroB, and a char-
acter token 2, also with property ‘other’ The meaning of \MyMacroA is five tokens: a
reference to a space token, then three character tokens with property ‘letter’, and fi-
nally a space token.

\def \MyMacroA{ and }
\edef\MyMacroB{1\MyMacroA 2}

a\MyMacroA b

In the second definition an \edef is used, where the e indicates expansion. This time
the meaning gets expanded immediately. So we get effectively the same as in:

\def\MyMacroB{1l and 2}

Characters are easy: they just expand to themselves or trigger adding a glyph node,
but not all primitives expand to their meaning or effect.

TEX primitives

70

\def\MyMacroA{\scratchcounter = 1 }
\def\MyMacroB{\advance\scratchcounter by 1}
\def\MyMacroC{\the\scratchcounter}

\MyMacroA a
\MyMacroB b
\MyMacroB c
\MyMacroB d
\MyMacroC

abcd4

macro:\scratchcounter = 1
macro:\advance \scratchcounter by 1
macro:\the \scratchcounter

Let's assume that \scratchcounter is zero to start with and use \edef's:

\edef\MyMacroA{\scratchcounter = 1 }
\edef\MyMacroB{\advance\scratchcounter by 1}
\edef\MyMacroC{\the\scratchcounter}

\MyMacroA a
\MyMacroB b
\MyMacroB c¢
\MyMacroB d
\MyMacroC

abcdO

macro:\scratchcounter =1
macro:\advance \scratchcounter by 1
macro:0

So, this time the third macro has its meaning frozen, but we can prevent this by applying
a \noexpand when we do this:

\edef\MyMacroA{\scratchcounter = 1 }
\edef\MyMacroB{\advance\scratchcounter by 1}
\edef\MyMacroC{\noexpand\the\scratchcounter}

\MyMacroA a
\MyMacroB b

TEX primitives

71

\MyMacroB c
\MyMacroB d
\MyMacroC

abcd4

macro:\scratchcounter =1
macro:\advance \scratchcounter by 1
macro:\the \scratchcounter

Of course this is a rather useless example but it serves its purpose: you'd better be
aware what gets expanded immediately in an \edef. In most cases you only need to
worry about \the and embedded macros (and then of course their meanings).

You can also store tokens in a so-called token register. Here we use a predefined scratch
register:

\def\MyMacroA{ and }
\def\MyMacroB{1\MyMacroA 2}
\scratchtoks {\MyMacroA}

The content of \scratchtoks is: “\MyMacroA”, so no expansion has happened here.

\def\MyMacroA{ and }
\def\MyMacroB{1\MyMacroA 2}
\scratchtoks \expandafter {\MyMacroA}

o«

Now the content of \scratchtoks is: “and ”, so this time expansion has happened.

\def\MyMacroA{ and }
\def\MyMacroB{1\MyMacroA 2}
\scratchtoks \expandafter {\MyMacroB}

Indeed the macro gets expanded but only one level: “1\MyMacroA 2”. Compare this
with:

\def\MyMacroA{ and }
\edef\MyMacroB{1\MyMacroA 2}
\scratchtoks \expandafter {\MyMacroB}

The trick is to expand in two steps with an intermediate \edef: “1 and 2”. Later we will
see that other engines provide some more expansion tricks. The only way to get some
grip on expansion is to just play with it.

TEX primitives

72

The \expandafter primitive expands the token (which can be a macro) standing after
the next next one and then injects its meaning into the stream. So:

\expandafter \MyMacroA \MyMacroB

works okay. In a normal document you will never need this kind of hackery: it only
happens in a bit more complex macros. Here is an example:

\scratchcounter 1

\bgroup
\advance\scratchcounter 1
\egroup
\the\scratchcounter

\scratchcounter 1

\bgroup
\advance\scratchcounter 1
\expandafter

\egroup
\the\scratchcounter

The first one gives 1, while the second gives 2.

4.3 e-IgX primitives

In this engine a couple of extensions were added and later on pdfTEX added some more.
We only discuss a few that relate to expansion. There is however a pitfall here. Before
e-TgX showed up, ConTEXt already had a few mechanism that also related to expansion
and it used some names for macros that clash with those in ¢-TgX. This is why we will
use the \normal prefix here to indicate the primitive.2.

\def\MyMacroA{a}

\def\MyMacroB{b}
\normalprotected\def\MyMacroC{c}
\edef\MyMacroABC{\MyMacroA\MyMacroB\MyMacroC}

These macros have the following meanings:

macro:a
macro:b

2 In the meantime we no longer have a low level \protected macro so one can use the primitive

e-IgX primitives

73

protected macro:c
macro:ab\MyMacroC

In ConTEXt you will use the \unexpanded prefix instead, because that one did something
similar in older versions of ConTgXt. As we were early adopters of £-TgX, this later
became a synonym to the ¢-TgX primitive.

\def\MyMacroA{a}

\def\MyMacroB{b}

\normalprotected\def\MyMacroC{c}
\normalexpanded{\scratchtoks{\MyMacroA\MyMacroB\MyMacroC}}

Here the wrapper around the token register assignment will expand the three macros,
unless they are protected, so its content becomes “ab\MyMacroC”. This saves either a
lot of more complex \expandafter usage or the need to use an intermediate \edef. In
ConTgXt the \expanded macro does something simpler but it doesn't expand the first
token as this is meant as a wrapper around a command, like:

\expanded{\chapter{....}} % a ConTeXt command

where we do want to expand the title but not the \chapter command (not that this
would happen actually because \chapter is a protected command.)

The counterpart of \normalexpanded is \normalunexpanded, as in:

\def\MyMacroA{a}

\def\MyMacroB{b}

\normalprotected\def\MyMacroC{c}

\normalexpanded {\scratchtoks
{\MyMacroA\normalunexpanded {\MyMacroB}\MyMacroC}}

The register now holds “a\MyMacroB\MyMacroC”: three tokens, one character token and
two macro references.

Tokens can represent characters, primitives, macros or be special entities like starting
math mode, beginning a group, assigning a dimension to a register, etc. Although you
can never really get back to the original input, you can come pretty close, with:

\detokenize{this can $ be anything \bgroup}

This (when typeset monospaced) is: this can $ be anything \bgroup. The detok-
enizer is like \string applied to each token in its argument. Compare this to:

\normalexpanded {

e-IgX primitives

74

\normaldetokenize{10pt}
}

We get four tokens: 10pt.

\normalexpanded {
\string 1\string O\string p\string t
}

So that was the same operation: 10pt, but in both cases there is a subtle thing going on:
characters have a catcode which distinguishes them. The parser needs to know what
makes up a command name and normally that's only letters. The next snippet shows
these catcodes:

\normalexpanded {
\noexpand\the\catcode \string 1 \noexpand\enspace
\noexpand\the\catcode \string 0 \noexpand\enspace
\noexpand\the\catcode \string p \noexpand\enspace
\noexpand\the\catcode \string t \noexpand

}

The result is “12 12 11 11”: two characters are marked as ‘letter’ and two fall in the
‘other’ category.

4.4 LuaTgX primitives

This engine adds a little to the expansion repertoire. First of all it offers a way to extend
token lists registers:

\def\MyMacroA{a}
\def\MyMacroB{b}
\normalprotected\def\MyMacroC{b}
\scratchtoks{\MyMacroA\MyMacroB}

The result is: “\MyMacroA\MyMacroB”.
\toksapp\scratchtoks{\MyMacroA\MyMacroB}
We're now at: “\MyMacroA\MyMacroB\MyMacroA\MyMacroB\MyMacroA\MyMacroB”.

\etoksapp\scratchtoks{\MyMacroA\space\MyMacroB\space\MyMacroC}

LuaTgX primitives

75

The register has this content: “\MyMacroA\MyMacroB\MyMacroA\MyMacroB a b \MyMacroC
a b \MyMacroC”, so the additional context got expanded in the process, except of course
the protected macro \MyMacroC.

There is a bunch of these combiners: \toksapp and \tokspre for local appending and
prepending, with global companions: \gtoksapp and \gtokspre, as well as expanding
variant: \etoksapp, \etokspre, \xtoksapp and \xtokspre.

These are not beforehand more efficient that using intermediate expanded macros or
token lists, simply because in the process TgX has to create tokens lists too, but some-
times they're just more convenient to use. In ConTgXt we actually do benefit from these.

4.5 LuaMetaTgX primitives
We already saw that macro's can be defined protected which means that

\def\TestA{A}
\protected \def\TestB{B}
\edef\TestC{\TestA\TestB}

gives this:
\TestC : A\TestB
One way to get \TestB expanded it to prefix it with \expand:

\def\TestA{A}
\protected \def\TestB{B}
\edef\TestC{\TestA\TestB}
\edef\TestD{\TestA\expand\TestB}

We now get:

\TestC : A\TestB
\TestD : AB

There are however cases where one wishes this to happen automatically, but that will
also make protected macros expand which will create havoc, like switching fonts.

\def\TestA{A}

\protected \def\TestB{B}

\semiprotected \def\TestC{C}
\edef\TestD{\TestA\TestB\TestC}

LuaMetaTgX primitives

76

\edef\TestE{\normalexpanded{\TestA\TestB\TestC}}
\edef\TestF{\semiexpanded {\TestA\TestB\TestC}}

This time \TestC looses its protection:

\TestA: A

\TestB: B

\TestC: C

\TestD : A\TestB \TestC
\TestE : A\TestB \TestC
\TestF : A\TestB C

Actually adding \fullyexpanded would be trivial but it makes not much sense to add
the overhead (at least not now). This feature is experimental anyway so it might go
away when I see no real advantage from it.

When you store something in a macro or token register you always need to keep an
eye on category codes. A dollar in the input is normally treated as math shift, a hash
indicates a macro parameter or preamble entry. Characters like ‘A’ are letters but ‘[’
and ‘]" are tagged as ‘other’. The TEX scanner acts according to these codes. If you ever
find yourself in a situation that changing catcodes is no option or cumbersome, you can
do this:

\edef\TestOA{\expandtoken\othercatcode A}
\edef\TestLA{\expandtoken\lettercatcode A}

In both cases the meaning is A but in the first case it's not a letter but a character
flagged as ‘other’.

A whole new category of commands has to do with so called local control. When TgX
scans and interprets the input, a process takes place that is called tokenizing: (se-
quences of) characters get a symbolic representation and travel through the system as
tokens. Often they immediately get interpreted and are then discarded. But when for
instance you define a macro they end up as a linked list of tokens in the macro body. We
already saw that expansion plays a role. In most cases, unless TgX is collecting tokens,
the main action is dealt with in the so-called main loop. Something gets picked up from
the input but can also be pushed back, for instance because of some lookahead that
didn't result in an action. Quite some time is spent in pushing and popping from the
so-called input stack.

When we are in Lua, we can pipe back into the engine but all is collected till we're
back in TEX where the collected result is pushed into the input. Because TgX is a mix
of programming and action there basically is only that main loop. There is no real way

LuaMetaTgX primitives

77

to start a sub run in Lua and do all kind of things independent of the current one. This
makes sense when you consider the mix: it would get too confusing.

However, in LuaTgX and even better in LuaMetaTgX, we can enter a sort of local state
and this is called ‘local control’. When we are in local control a new main loop is entered
and the current state is temporarily forgotten: we can for instance expand where one
level up expansion was not done. It sounds complicated an indeed it is complicated so
examples have to clarify it.

1 \setbox0\hbox to 10pt{2} \count0=3 \the\count® \multiply\countO by 4
This snippet of code is not that useful but illustrates what we're dealing with:
* The 1 gets typeset. So, characters like that are seen as text.

* The \setbox primitive triggers picking up a register number, then goes on scanning
for a box specification and that itself will typeset a sequence of whatever until the
group ends.

* The count primitive triggers scanning for a register number (or reference) and then
scans for a number; the equal sign is optional.

* The the primitive injects some value into the current input stream and it does so by
entering a new input level.

* The multiply primitive picks up a register specification and multiplies that by the
next scanned number. The by is optional.

We now look at this snippet again but with an expansion context:
\def \TestA{l \setbox0\hbox{2} \count0=3 \the\countO}
\edef\TestB{1l \setbox0\hbox{2} \count0=3 \the\count0}

These two macros have a slightly different body. Make sure you see the difference
before reading on.

control sequence: TestA

593565 12 49 otherchar 1 U+00031
592857 10 32 spacer

592482 129 0 set box setbox
298963 12 48 otherchar 0 U+00030
593583 31 14 make box hbox

587567 1 123 left brace

LuaMetaTgX primitives

78

593521 12 50 other char U+00032

578559 2 125 right brace

478769 10 32 spacer

9501 122 1 register count
592495 12 48 other char U+00030
587574 12 61 other char U+0003D
593243 12 51 other char U+00033
593469 10 32 spacer

593027 140 the the
332666 122 1 register count
593043 12 48 other char U+00030
control sequence: TestB

593898 12 49 other char U+00031

593100 10 32 spacer

593727 129 0 set box setbox
593900 12 48 other char U+00030
592878 31 14 make box hbox
593182 1 123 left brace

593457 12 50 other char U+00032

593431 2 125 right brace

592701 10 32 spacer

478809 122 1 register count
592622 12 48 other char U+00030
478822 12 61 other char U+0003D
592843 12 51 otherchar U+00033

593421 10 32 spacer

593953 12 49 other char U+00031

We now introduce a new primitive \localcontrolled:

\edef\TestB{1l \setbox0\hbox{2} \count0=3 \the\count0O}
\edef\TestC{1l \setboxO\hbox{2} \localcontrolled{\count0=3} \the\count0}

Again, watch the subtle differences:

control sequence: TestB

593056 12 49 otherchar 1 U+00031
592453 10 32 spacer
478774 129 0 setbox setbox

LuaMetaTgX primitives

79

593923 12 48 otherchar 0 U+00030
332609 31 14 make box hbox
592313 1 123 left brace

593936 12 50 otherchar 2 U+00032
324429 2 125 right brace

593891 10 32 spacer

593096 122 1 register count
593908 12 48 otherchar 0 U+00030
593134 12 61 otherchar = U+0003D
592866 12 51 otherchar 3 U+00033
593101 10 32 spacer

592916 12 49 otherchar 1 U+00031
control sequence: TestC

592369 12 49 otherchar 1 U+00031
593898 10 32 spacer

593100 129 0 set box setbox
593727 12 48 otherchar 0 U+00030
593900 31 14 make box hbox
592878 1 123 left brace

593182 12 50 otherchar 2 U+00032
593457 2 125 right brace

593431 10 32 spacer

593421 10 32 spacer

591528 12 51 otherchar 3 U+00033

Another example:

\edef\TestB{1l \setbox0\hbox{2} \count0=3 \the\count0O}

\edef\TestD{\localcontrolled{1l \setbox0\hbox{2} \count0=3 \the\countO}}

13

— Watch how the results end up here!

control sequence: TestB

593078
332681
593124
593970
478842
536443

12
10
129
12
31
1

49
32
0
48
14
123

other char
spacer
set box
other char
make box
left brace

1 U+00031

0 U+00030

setbox

hbox

LuaMetaTgX primitives

80

593916 12 50 other char U+00032
593198 2 125 right brace

592617 10 32 spacer

592683 122 1 register count
593450 12 48 other char U+00030

97854 12 61 other char U+0003D
593667 12 51 other char U+00033
593178 10 32 spacer

593259 12 51 otherchar 3 U+00033

control sequence: TestD

<no tokens>

We can use this mechanism to define so called fully expandable macros:

\def\WidthOf#1%
{\beginlocalcontrol
\setbox0\hbox{#1}%
\endlocalcontrol
\wd0O }

\scratchdimen\WidthOf{The Rite Of Spring}

\the\scratchdimen

104.72021pt

When you want to add some grouping, it quickly can become less pretty:

\def\WidthOf#1%
{\dimexpr
\beginlocalcontrol
\begingroup
\setbox0\hbox{#1}%
\expandafter
\endgroup
\expandafter
\endlocalcontrol
\the\wd0
\relax}

\scratchdimen\WidthOf{The Rite Of Spring}

LuaMetaTgX primitives

81

\the\scratchdimen
104.72021pt
A single token alternative is available too and its usage is like this:

\def\TestA{\scratchcounter=100 }
\edef\TestB{\localcontrol\TestA \the\scratchcounter}
\edef\TestC{\localcontrolled{\TestA} \the\scratchcounter}

The content of \TestB is ‘100’ and of course the \TestC macro gives * 100’.

We now move to the Lua end. Right from the start the way to get something into TgX
from Lua has been the print functions. But we can also go local (immediate). There are
several methods:

* via a set token register
* via a defined macro
* via a string

Among the things to keep in mind are catcodes, scope and expansion (especially in when
the result itself ends up in macros). We start with an example where we go via a token
register:

\toksO={\setbox0\hbox{The Rite Of Spring}}
\toks2={\setbox0\hbox{The Rite Of Spring!}}

\startluacode

tex.runlocal(0) context("[1l: %p]",tex.box[0].width)
tex.runlocal(2) context("[2: %p]",tex.box[0].width)
\stopluacode

[1: 104.72021pt][2: 109.14062pt]
We can also use a macro:

\def\TestA{\setbox0\hbox{The Rite Of Spring}}
\def\TestB{\setbox0\hbox{The Rite Of Spring!}}

\startluacode

tex.runlocal("TestA") context("[3: %p]",tex.box[0].width)
tex.runlocal("TestB") context("[4: %p]",tex.box[0].width)
\stopluacode

LuaMetaTgX primitives

82

[3: 104.72021pt][4: 109.14062pt]
A third variant is more direct and uses a (Lua) string:

\startluacode
tex.runstring([[\setboxO\hbox{The Rite Of Spring}]1])

context("[5: %p]",tex.box[0].width)
tex.runstring([[\setbox@\hbox{The Rite Of Spring!'}11)

context("[6: %p]",tex.box[0].width)
\stopluacode

[5: 104.72021pt][6: 109.14062pt]
A bit more high level:

context.runstring([[\setbox0\hbox{(Here \bf 1.2345)}11)
context.runstring([[\setbox0\hbox{(Here \bf %.3f)}11,1.2345)

Before we had runstring this was the way to do it when staying in Lua was needed:

\startluacode

token.setmacro("TestX", [[\setboxO\hbox{The Rite Of Spring}]11])
tex.runlocal("TestX")

context("[7: %p]",tex.box[0].width)

\stopluacode

[7: 104.72021pt]

\startluacode

tex.scantoks (0, tex.ctxcatcodes, [[\setbox0\hbox{The Rite O0f Spring!}11)
tex.runlocal(0)

context("[8: %p]",tex.box[0].width)

\stopluacode

[8: 109.14062pt]

The order of flushing matters because as soon as something is not stored in a token list
or macro body, TeX will typeset it. And as said, a lot of this relates to pushing stuff into
the input which is stacked. Compare:

\startluacode

LuaMetaTgX primitives

83

context ("[HERE 1]")
context ("[HERE 2]1")
\stopluacode

[HERE 1][HERE 2]
with this:

\startluacode
tex.pushlocal() context("[HERE 1]") tex.poplocal()
tex.pushlocal() context("[HERE 2]") tex.poplocal()
\stopluacode

[HERE 1][HERE 2]

You can expand a macro at the Lua end with token.expandmacro which has a peculiar
interface. The first argument has to be a string (the name of a macro) or a userdata (a
valid macro token). This macro can be fed with parameters by passing more arguments:

string serialized to tokens

true wrap the next string in curly braces

table each entry will become an argument wrapped in braces
token inject the token directly

number change control to the given catcode table

There are more scanner related primitives, like the e-TgX primitive \detokenize:
[\detokenize {test \relax}]

This gives: [test \relax] . In LuaMetaTgX we also have complementary primi-
tive(s):

[\tokenized catcodetable \vrbcatcodes {test {\bf test} test}]
[\tokenized {test {\bf test} test}]
[\retokenized \vrbcatcodes {test {\bf test} test}]

The \tokenized takes an optional keyword and the examples above give: [test {\bf test} test
[test test test] [test {\bf test} test] . The LuaTgX primitive \scantextokens

which is a variant of -TgX's \scantokens operates under the current catcode regime

(the last one honors \everyeof). The difference with \tokenized is that this one first
serializes the given token list (just like \detokenize).?

The \scan *tokens primitives now share the same helpers as Lua, but they should behave the same as in
LuaTgX.

LuaMetaTgX primitives

84

With \retokenized the catcode table index is mandatory (it saves a bit of scanning and
is easier on intermixed \expandafter usage. There often are several ways to accom-
plish the same:

\def\MyTitle{test {\bf test} test}

\detokenize \expandafter{\MyTitle}: 0.46\crlf
\meaningless \MyTitle : 0.47\crlf
\retokenized \notcatcodes{\MyTitle}: 0.87\crlf

\tokenized catcodetable \notcatcodes{\MyTitle}: 0.93\crlf

test {\bf test} test: 0.46
test {\bf test} test: 0.47
test {\bf test} test: 0.87
test {\bf test} test: 0.93

Here the numbers show the relative performance of these methods. The \detokenize
and \meaningless win because they already know that a verbose serialization is needed.
The last two first serialize and then reinterpret the resulting token list using the given
catcode regime. The last one is slowest because it has to scan the keyword.

There is however a pitfall here:

\def\MyText {test}
\def\MyTitle{test \MyText\space test}

\detokenize \expandafter{\MyTitle}\crlf
\meaningless \MyTitle \crlf
\retokenized \notcatcodes{\MyTitle}\crlf

\tokenized catcodetable \notcatcodes{\MyTitle}\crlf

The outcome is different now because we have an expandable embedded macro call.
The fact that we expand in the last two primitives is also the reason why they are
‘slower’.

test \MyText \space test
test \MyText \space test
test test test
test test test

To complete this picture, we show a variant than combines much of what has been
introduced in this section:

LuaMetaTgX primitives

85

\semiprotected\def\MyTextA {test}
\def\MyTextB {test}
\def\MyTitle{test \MyTextA\space \MyTextB\space test}

\detokenize \expandafter{\MyTitle}\crlf
\meaningless \MyTitle \crlf
\retokenized \notcatcodes{\MyTitle}\crlf
\retokenized \notcatcodes{\semiexpanded{\MyTitle}}\crlf

\tokenized catcodetable \notcatcodes{\MyTitle}\crlf
\tokenized catcodetable \notcatcodes{\semiexpanded{\MyTitle}}

This time compare the last four lines:

test \MyTextA \space \MyTextB \space test
test \MyTextA \space \MyTextB \space test
test \MyTextA test test

test test test test

test \MyTextA test test

test test test test

Of course the question remains to what extend we need this and eventually will apply
in ConIgXt. The \detokenize is used already. History shows that eventually there is a
use for everything and given the way LuaMetaTgX is structured it was not that hard to
provide the alternatives without sacrificing performance or bloating the source.

4.6 Dirty tricks

When I was updating this manual Hans vd Meer and I had some discussions about
expansion and tokenization related issues when combining of xml processing with TgX
macros where he did some manipulations in Lua. In these mixed cases you can run
into catcode related problems because in xml you want for instance a # to be a hash
mark (other character) and not an parameter identifier. Normally this is handled well
in ConTgXt but of course there are complex cases where you need to adapt.

Say that you want to compare two strings (officially we should say token lists) with mixed
catcodes. Let's also assume that you want to use the normal \if construct (which was
part of the discussion). We start with defining a test set. The reason that we present
this example here is that we use commands discussed in previous sections:

\def\abc{abc}
\semiprotected \def\xyz{xyz}
\edef\pqr{\expandtoken\notcatcodes p%

Dirty tricks

5:
6:

86

\expandtoken\notcatcodes"
\expandtoken\notcatcodes"

: \ifcondition\similartokens{abc} {def}YES\else
: \ifcondition\similartokens{abc}{\abc}YES\else

: \ifcondition\similartokens{xyz} {pqr}YES\else
: \ifcondition\similartokens{xyz}{\xyz}YES\else

\ifcondition\similartokens{pqr} {pqr}YES\else
\ifcondition\similartokens{pqr}{\pqr}YES\else

NOP\fi
NOP\fi

NOP\fi
NOP\fi

NOP\fi
NOP\fi

(NOP) \quad
(YES)

(NOP) \quad
(YES)

(YES) \quad
(YES)

So, we have a mix of expandable and semi expandable macros, and also a mix of cat-
codes. A naive approach would be:

\permanent\protected\def\similartokens#1#2%

{\iftok{#1}{#2}}

but that will fail on some cases:

1: NOP(NOP) 2: YES(YES)
3: NOP(NOP) 4: NOP(YES)
5: YES(YES) 6: NOP(YES)

So how about:

\permanent\protected\def\similartokens#1#2%

{\iftok{\detokenize{#1}}{\detokenize{#2}}}

That one is even worse:

1: NOP(NOP) 2: NOP(YES)
3: NOP(NOP) 4: NOP(YES)
5: YES(YES) 6: NOP(YES)

We need to expand so we end up with this:

\permanent\protected\def\similartokens#1#2%
{\normalexpanded{\noexpand\iftok
{\noexpand\detokenize{#1}}
{\noexpand\detokenize{#2}}}}

Better:

1: NOP(NOP) 2: YES(YES)

Dirty tricks

87

3: NOP(NOP) 4: NOP(YES)
5: YES(YES) 6: YES(YES)

But that will still not deal with the mildly protected macro so in the end we have:

\permanent\protected\def\similartokens#1#2%
{\semiexpanded{\noexpand\iftok
{\noexpand\detokenize{#1}}
{\noexpand\detokenize{#2}}}}

Now we're good:

1: NOP(NOP) 2: YES(YES)
3: NOP(NOP) 4: YES(YES)
5: YES(YES) 6: YES(YES)

Finally we wrap this one in the usual \doifelse. .. macro:

\permanent\protected\def\doifelsesimilartokens#1#2%
{\ifcondition\similartokens{#1}{#2}%
\expandafter\firstoftwoarguments
\else
\expandafter\secondoftwoarguments
\fi}

so that we can do:
\doifelsesimilartokens{pqr}{\pqr}{YES}{NOP}

A companion macro of this is \wipetoken but for that one you need to look into the
source.

4.6 Colofon

Author Hans Hagen

ConTgXt 2025.02.19 14:35
LuaMetaTgX 2.11.07 ‘ 20250219
Support www.pragma-ade.com

contextgarden.net
ntg-context@ntg.nl

Colofon

5 Registers

88

low level

1EX

registers

89

Contents

5.1 Preamble 89
5.2 TgX primitives 89
5.3 &-TgX primitives 92
5.4 LuaTgX primitives 92
5.5 LuaMetaTgX primitives 93
5.6 Units 94

5.1 Preamble

Registers are sets of variables that are accessed by index and a such resemble regis-
ters in a processing unit. You can store a quantity in a register, retrieve it, and also
manipulate it.

There is hardly any need to use them in ConTEXt so we keep it simple.

5.2 TgX primitives

There are several categories:

Integers (int): in order to be portable (at the time it surfaced) there are only integers
and no floats. The only place where TgX uses floats internally is when glue gets
effective which happens in the backend.

Dimensions (dimen): internally these are just integers but when they are entered
they are sliced into two parts so that we have a fractional part. The internal repre-
sentation is called a scaled point.

Glue (skip): these are dimensions with a few additional properties: stretch and
shrink. Being a compound entity they are stored differently and thereby a bit less
efficient than numbers and dimensions.

Math glue (muskip): this is the same as glue but with a unit that adapts to the current
math style properties. It's best to think about them as being relative measures.

Token lists (toks): these contain a list of tokens coming from the input or coming
from a place where they already have been converted.

The original TEX engine had 256 entries per set. The first ten of each set are normally
reserved for scratch purposes: the even ones for local use, and the odd ones for global

Preamble

90

usage. On top of that macro packages can reserve some for its own use. It was quite
easy to reach the maximum but there were tricks around that. This limitation is no
longer present in the variants in use today.

Let's set a few dimension registers:

\dimen 0 = 10 pt
\dimen2=10pt
\dimen4 10pt
\scratchdimen 10pt

We can serialize them with:

\the \dimen0
\number \dimen2
\meaning\dimen4
\meaning\scratchdimen

The results of these operations are:

10.0pt

655360

\dimen4

constant dimension 10.0pt

The last two is not really useful but it is what you see when tracing options are set. Here
\scratchdimen is a shortcut for a register. This is not a macro but a defined register.
The low level \dimendef is used for this but in a macro package you should not use that
one but the higher level \newdimen macro that uses it.

\newdimen\MyDimenA
\def \MyDimenB{\dimen999}
\dimendef\MyDimenC998

\meaning\MyDimenA
\meaning\MyDimenB
\meaning\MyDimenC

Watch the difference:

\dimen269
macro:\dimen 999
\dimen998

TEX primitives

91

The first definition uses a yet free register so you won't get a clash. The second one is
just a shortcut using a macro and the third one too but again direct shortcut. Try to
imagine how the second line gets interpreted:

\MyDimenAlOpt \MyDimenAl0.5pt
\MyDimenB1Opt \MyDimenB1l0O.5pt
\MyDimenC10pt \MyDimenC10.5pt

Also try to imagine what messing around with \MyDimenC will do when we also have
defined a few hundred extra dimensions with \newdimen.

In the case of dimensions the \number primitive will make the register serialize as scaled
points without unit sp.

Next we see some of the other registers being assigned:

\count 0O = 100

\skip 0 = 10pt plus 3pt minus 2pt
\skip 0 = 10pt plus 1fill

\muskip 0 = 10mu plus 3mu minus 2mu
\muskip 0 = 10mu minus 1 fil

\toks 0 = {hundred}

When a number is expected, you can use for instance this:
\scratchcounter\scratchcounterone

Here we use a few predefined scratch registers. You can also do this:
\scratchcounter\numexpr\scratchcounterone+\scratchcountertwo\relax
There are some quantities that also qualify as number:

\chardef\MyChar=123 % refers to character 123 (if present)
\scratchcounter\MyChar

In the past using \chardef was a way to get around the limited number of registers,
but it still had (in traditional TgX) a limitation: you could not go beyond 255. The
\mathchardef could fo higher as it also encodes a family number and class. This limi-
tation has been lifted in LuaTgX.

A character itself can also be interpreted as number, in which case it has to be prefixed
with a reverse quote: , so:

TEX primitives

92

\scratchcounter\numexpr 0+5\relax
\char\scratchcounter

produces “5” because the "0 expands into the (ascii and utf8) slot 48 which represents
the character zero. In this case the next makes more sense:

\char\numexpr 0+5\relax

If you want to know more about all these quantities, “TEX By Topic” provides a good
summary of what TgX has to offer, and there is no need to repeat it here.

5.3 &-IEX primitives

Apart from the ability to use expressions, the contribution to registers that -TgX brought
was that suddenly we could use upto 65K of them, which is more than enough. The extra
registers were not as efficient as the first 256 because they were stored in the hash ta-
ble, but that was not really a problem. In Omega and later LuaTgX regular arrays were
used, at the cost of more memory which in the meantime has become cheap. As ConTgXt
moved to e-TgX rather early its users never had to worry about it.

5.4 LuaTgX primitives

The LuaTgX engine introduced attributes. These are numeric properties that are bound
to the nodes that are the result of typesetting operations. They are basically like integer
registers but when set their values get bound and when unset they are kind of invisible.

* Attribute (attribute): a numeric property that when set becomes part of the current
attribute list that gets assigned to nodes.

Attributes can be used to communicate properties to Lua callbacks. There are several
functions available for setting them and querying them.

\attribute999 = 123

Using attributes this way is dangerous (of course I can only speak for ConTgXt) because
an attribute value might trigger some action in a callback that gives unwanted side
effects. For convenience ConTEXt provides:

\newattribute\MyAttribute

e-IgX primitives

93

Which currently defines \MyAttribute as constant integer 1026 and is meant to be
used as:*

\attribute\MyAttribute = 123

Just be aware that defining attributes can have an impact on performance. As you
cannot access them at the TgX end you seldom need them. If you do you can better use
the proper more high level definers (not discussed here).

5.5 LuaMetaIlgX primitives

The fact that scanning stops at a non-number or \relax can be sort of unpredictable
which is why in LuaMetaTgX we also support the following variant:

\scratchdimen\dimexpr 10pt + 3pt \relax
\scratchdimen\dimexpr {10pt + 3pt}

At the cost of one more token braces can be used as boundaries instead of the single
\relax boundary.

An important property of registers is that they can be accessed by a number. This has
big consequences for the implementation: they are part of the big memory store and
consume dedicated ranges. If we had only named access TEX's memory layout could be
a bit leaner. In principle we could make the number of registers smaller because any
limit on the amount at some point can be an obstacle. It is for that reason that we also
have name-only variants:

\dimensiondef \MyDimenA 12pt

\integerdef \MyIntegerA 12

\gluespecdef \MyGlueA 12pt + 3pt minus 4pt
\mugluespecdef\MyMuA 12mu + 3mu minus 4mu

These are as efficient but not accessible by number but they behave like registers which
means that you (can) use \the, \advance, \multiply and \divide with them.’ In case
you wonder why there is no alternative for \toksdef, there actually are multiple: they
are called macros.

todo: expressions

The low level \attributedef command is rather useless in the perspective of ConTEXt.
5 There are also the slightly more efficient \advanceby, \multiplyby and \divideby that don't check for the
by keyword.

LuaMetaTgX primitives

94

5.6 Units

The LuaMetaTgX engine supports the following units. The first batch is constant with
hard coded fine tuned values. The second set is related to the current font. The last
group is kind of special, the es is a replacement for the in and has a little sister in ts.
The dk is dedicated to the master and makes a nice offset for so called TEX pages that
we use for demos.

pt 1.0 point

bp 1.00374 big point (aka postscript point)
in 72.26999 inch

cm 28.45274 centimeter

mm 2.84526 milimeter

dd 1.07 didot
ccC 12.8401 cicero
pc 12.0 pica

sp 0.00002 scaled points
px 0.00002 pixel

ex 5.70947 ex height
em 11.0 em width
mu 1.0 math unit

ts 7.11317 tove

es 71.13177 edith

eu 71.13177 european unit
dk 6.43985 knuth

The fi[111] unit is not really a unit but a multiplier for infinite stretch and shrink;
original TgX doesn't have the simple fi.

In addition to these we can have many more. In principle a user can define additional
ones but there's always a danger of clashing. For users we reserve the units starting
with an u. Here is how you define your own, we show three variants:

\newdimension \FooA \FooA 1.23pt
\newdimen \FooB \FooB 12.3pt
\protected\def\FooC {\the\dimexpr\FooA +\FooB\relax}

\pushoverloadmode % just in case
\newuserunit\FooA ua
\newuserunit\FooB ub
\newuserunit\FooC uc

Units

95

\popoverloadmode

And this is how they show up:
2.45999pt 24.6pt 27.06pt
with

\the\dimexpr 2 ua \relax\quad
\the\dimexpr 2 ub \relax\quad
\the\dimexpr 2 uc \relax

The following additional units are predefined (reserved). The values are in points and
some depend on the current layout and document font.

pi 3.14159 1 for Mikael

ft 867.23999 foot for Alan

fs 11.0 (global body) font size
tw 483.69687 (layout) text width

th 645.88272 (layout) text height

hs 483.69687 (current) hsize

vs 645.88272 (current) vsize

cd 0.0 (when set) column distance
cw 483.69687 (when set) column width
CX 236.34843 combination cell width
uu 28.45274 wuser unit (MetaFun)

fw 0.0 framed width
th 0.0 framed height
fo 0.0 framed offset
1w 0.4 line width

sh 11.51031 strut height
sd 4.47621 strut depth
st 15.98653 strut total

ch 6.99854 width of zero (css)
fa 8.35742 font ascender

fd 1.71338 font descender

fc 8.01904 font cap height

Here is an example of usage:

Units

96

abcdefghijk1l1mnopgrstuvwxyz
a
b be bh bp bw
C cc cd ch cm cw CX
d dd dk
e em es eu ex
f fa fc fd fh fi fo fs ft fw
9
h hs
i in
j
k
1 lc 1h lr w
m ma mm mq mu mx
n
0
p pc ph pi pt pw px
q
r
s sd sh sp st
t th ts tw
u ua ub uc uu
Vv Vs
w
X
y
z

Figure 5.1 A map of available units

\startcombination[nx=4,ny=1]
{\ruledhbox to lcx{\strut one}} {1}
{\ruledhbox to lcx{\strut two}} {2}
{\ruledhbox to lcx{\strut three}} {3}
{\ruledhbox to lcx{\strut four}} {4}
\stopcombination

1one 1 1two 1 ﬁMe,e ,,, ‘ Lfo,ur ,,,

1 2 3 4

The uu can be set by users using the \uunit dimension variable. The default valu sis
lcm. Its current value is also known at the MetaPost end, as demonstrated in figure 5.2.

\startcombination[nx=2,ny=1]

Units

97

\startcontent
\uunit=1cm
\framed[offset=1uu]
\bgroup
\startMPcode
fill fullcircle scaled 3uu withcolor "darkred" ;
fill fullcircle scaled 2cm withcolor "darkgreen" ;
\stopMPcode
\egroup
\stopcontent
\startcaption
\type {\uunit
\stopcaption
\startcontent
\uunit=1cx
\framed[offset
\bgroup
\startMPcode
fill fullcircle scaled .5uu withcolor "darkblue™ ;
fill fullcircle scaled 2cm withcolor "darkyellow" ;
\stopMPcode
\egroup
\stopcontent
\startcaption
\type {\uunit = lcx}
\stopcaption
\stopcombination

lcm}

.1uu]

There is one catch here. If you use your own uu as numeric, you might need this:
save uu ; numeric uu ; uu := lcm ;

That is: make sure the meaning is restored afterwards and explicitly declare the vari-
able. But this is good practice anyway when you generate multiple graphics using the
same MetaPost instance.

There a few units not mentioned yet and those concern math, where we need to adapt
to the current style.

Units

98

\uunit = 1cm \uunit = 1cx

Figure 5.2 Shared user units in TgX and MetaFun.

X+IJX X+ x x+dx

text style script style script script style

The bars show lex, 1ma (axis), 1mx (ex-height) and 1mq (em-width or quad). The last
three adapt themselves to the style. Often the mx makes more sense than ex.

Units

99

5.6 Colofon

Author Hans Hagen

ConTgXt 2025.02.19 14:35
LuaMetaTgX 2.11.07 ‘ 20250219
Support www.pragma-ade.com

contextgarden.net
ntg-context@ntg.nl

Colofon

100

6 Macros

low level

1EX

IMNacros

101

Contents

6.1 Preamble

6.2 Definitions

6.3 Runaway arguments
6.4 Introspection

6.5 nesting

6.6 Prefixes

6.7 Arguments

6.8 Constants

6.9 Passing parameters
6.10 Nesting

6.11 Duplicate hashes

6.1 Preamble

101
101
111
112
113
116
118
119
120
124
125

This chapter overlaps with other chapters but brings together some extensions to the
macro definition and expansion parts. As these mechanisms were stepwise extended,

the other chapters describe intermediate steps in the development.

Now, in spite of the extensions discussed here the main ides is still that we have TgX
act like before. We keep the charm of the macro language but these additions make for
easier definitions, but (at least initially) none that could not be done before using more

code.

6.2 Definitions

A macro definition normally looks like like this:®

\def\macro#1#2%
{\dontleavehmode\hbox to 6em{\vl\type{#1}\vl\type{#2}\vl\hss}}

Such a macro can be used as:

\macro {1}{2}

\macro {1} {2} middle space gobbled
\macro 1 {2} middle space gobbled
\macro {1} 2 middle space gobbled

6 The \dontleavehmode command make the examples stay on one line.

Preamble

102

\macro 1 2 middle space gobbled

We show the result with some comments about how spaces are handled:

middle space gobbled
middle space gobbled
middle space gobbled
middle space gobbled

H = P = =
NN N NN

A definition with delimited parameters looks like this:

\def\macro[#11%
{\dontleavehmode\hbox to 6em{\vl\type{#1}\vl\hss}}

When we use this we get:

\macro [1]
\macro [1] leading space kept
\macro [1] trailing space kept

\macro [1] both spaces kept

Again, watch the handling of spaces:

1
1 leading space kept
1 trailing space kept
1 ‘ both spaces kept

Just for the record we show a combination:

\def\macro[#1]#2%
{\dontleavehmode\hbox to 6em{\vl\type{#1}\vLl\type{#2}\vl\hss}}

With this:

\macro [1]1{2}
\macro [1] {2}
\macro [1] 2

we can again see the spaces go away:

Definitions

103

12
A definition with two separately delimited parameters is given next:

\def\macro[#1#2]1%
{\dontleavehmode\hbox to 6em{\vl\type{#1}\vl\type{#2}\vl\hss}}

When used:

\macro [12]

\macro [12] leading space gobbled

\macro [12] trailing space kept

\macro [12] leading space gobbled, trailing space kept
\macro [1 2] middle space kept

\macro [1 2] leading space gobbled, middle and trailing space kept

We get ourselves:

12

12 leading space gobbled

12 trailing space kept

12 leading space gobbled, trailing space kept

12 middle space kept

12 ‘ leading space gobbled, middle and trailing space kept

These examples demonstrate that the engine does some magic with spaces before (and
therefore also between multiple) parameters.

We will now go a bit beyond what traditional TgX engines do and enter the domain of
LuaMetaTgX specific parameter specifiers. We start with one that deals with this hard
coded space behavior:

\def\macro[# #"1%
{\dontleavehmode\hbox to 6em{\vl\type{#1}\vl\type{#2}\vl\hss}}

The #”~ specifier will count the parameter, so here we expect again two arguments but
the space is kept when parsing for them.

\macro [12]

\macro [12]
\macro [12]
\macro [12]
\macro [1 2]

Definitions

104

\macro [1 2]

Now keep in mind that we could deal well with all kind of parameter handling in Con-
TEXt for decades, so this is not really something we missed, but it complements the to be
discussed other ones and it makes sense to have that level of control. Also, availability
triggers usage. Nevertheless, some day the #” specifier will come in handy.

12
12
12
12 |
2
12|

=

We now come back to an earlier example:

\def\macro[#1]%
{\dontleavehmode\hbox spread lem{\vl\type{#1}\vl\hss}}

When we use this we see that the braces in the second call are removed:

\macro [1]
\macro [{1}]

i
This can be prohibited by the #+ specifier, as in:

\def\macro[#+]%
{\dontleavehmode\hbox spread lem{\vl\type{#1l}\vli\hss}}

As we see, the braces are kept:

\macro [1]
\macro [{1}]

Again, we could easily get around that (for sure intended) side effect but it just makes
nicer code when we have a feature like this.

1 [y

Sometimes you want to grab an argument but are not interested in the results. For this
we have two specifiers: one that just ignores the argument, and another one that keeps
counting but discards it, i.e. the related parameter is empty.

Definitions

105

\def\macro[#1][#0][#3]1[#-]1[#4]1%
{\dontleavehmode\hbox spread lem
{\vl\type{#1}\vi\type{#2}\vi\type{#3}\vl\type{#4}\vi\hss}}

The second argument is empty and the fourth argument is simply ignored which is why
we need #4 for the fifth entry.

\macro [1][2][3]1[4]1[5]
Here is proof that it works:
135

The reasoning behind dropping arguments is that for some cases we get around the
nine argument limitation, but more important is that we don't construct token lists that
are not used, which is more memory (and maybe even cpu cache) friendly.

Spaces are always kind of special in TgX, so it will be no surprise that we have another
specifier that relates to spaces.

\def\macro[#1]#*[#2]%
{\dontleavehmode\hbox spread lem{\vl\type{#1l}\vi\type{#2}\vi\hss}}

This permits usage like the following:

\macro [1][2]
\macro [1] [2]

2 2

Without the optional ‘grab spaces’ specifier the second line would possibly throw an
error. This because TgX then tries to match][so the] [in the input is simply added
to the first argument and the next occurrence of][will be used. That one can be
someplace further in your source and if not TgX complains about a premature end of
file. But, with the #* option it works out okay (unless of course you don't have that
second argument [2].

Now, you might wonder if there is a way to deal with that second delimited argument
being optional and of course that can be programmed quite well in traditional macro
code. In fact, ConTgXt does that a lot because it is set up as a parameter driven system
with optional arguments. That subsystem has been optimized to the max over years
and it works quite well and performance wise there is very little to gain. However, as
soon as you enable tracing you end up in an avalanche of expansions and that is no fun.

Definitions

106

This time the solution is not in some special specifier but in the way a macro gets de-
fined.

\tolerant\def\macro[#1]#*[#2]1%
{\dontleavehmode\hbox spread lem{\vl\type{#1l}\vi\type{#2}\vi\hss}}

The magic \tolerant prefix with delimited arguments and just quits when there is no
match. So, this is acceptable:

\macro [1][2]
\macro [1] [2]

\macro [1]
\macro
12 [o |

We can check how many arguments have been processed with a dedicated conditional:

\tolerant\def\macro[#1]#*[#2]%
{\ifarguments 0O\or 1\or 2\or ?\fi: \vl\type{#1}\vl\type{#2}\vl}

We use this test:
\macro [1][2] \macro [1] [2] \macro [1l] \macro

The result is: 2: ‘1‘2‘ 2: ‘1‘2‘ 1: ‘1‘0: | which is what we expect because we flush inline and
there is no change of mode. When the following definition is used in display mode, the
leading n= can for instance start a new paragraph and when code in \everypar you can
loose the right number when macros get expanded before the n gets injected.

\tolerant\def\macro[#1]#*[#2]%
{n=\ifarguments O\or 1\or 2\or ?\fi: \vl\type{#1}\vl\type{#2}\vl}

In addition to the \ifarguments test primitive there is also a related internal counter
\lastarguments set that you can consult, so the \ifarguments is actually just a shortcut
for \ifcase\lastarguments.

We now continue with the argument specifiers and the next two relate to this optional
grabbing. Consider the next definition:

\tolerant\def\macro#l#*#2%
{\dontleavehmode\hbox spread lem{\vl\type{#1}\vl\type{#2}\vi\hss}}

With this test:

Definitions

107

\macro {1} {2}
\macro {1}
\macro

We get:
\1\2\ \1\\mac ro\

This is okay because the last \macro is a valid (single token) argument. But, we can
make the braces mandate:

\tolerant\def\macro#=#*#=%
{\dontleavehmode\hbox spread lem{\vl\type{#1}\vl\type{#2}\vl\hss}}

Here the #= forces a check for braces, so:

\macro {1} {2}
\macro {1}
\macro

gives this:
2 A

However, we do loose these braces and sometimes you don't want that. Of course when
you pass the results downstream to another macro you can always add them, but it was
cheap to add a related specifier:

\tolerant\def\macro# #*# %
{\dontleavehmode\hbox spread lem{\vl\type{#1l}\vi\type{#2}\vi\hss}}

Again, the magic \tolerant prefix works will quit scanning when there is no match.
So:

\macro {1} {2}

\macro {1}
\macro

leads to:
{1342y Kay |

When you're tolerant it can be that you still want to pick up some argument later on.
This is why we have a continuation option.

Definitions

108

\tolerant\def\foo [#11#F [#21#:43{ ' #1'#2'#3 '}
\tolerant\def\oof [#1]1#* [#2]1#: (#3)#:#4{ ' #11#2'#31#4'}
\tolerant\def\ofo [#1]14: (#2)#:#3{ ' #11#21#3!'}

Hopefully the next example demonstrates how it works:

\foo{3} \foo[1l]{3} \foo[1l][2]{3}

\oof{4} \oof[1]{4} \oof[1][2]{4}
\oof[1]1[2](3){4} \oof[1]1(3){4} \oof(3){4}
\ofo{3} \ofo[1l]{3}

\ofo[1l](2){3} \ofo(2){3}

As you can see we can have multiple continuations using the #: directive:

M3 gt 11213t
14 14 11121141
111213141 11113141 111314!
a3 a3t

1112131 11213!

The last specifier doesn't work well with the \ifarguments state because we no longer
know what arguments were skipped. This is why we have another test for arguments.
A zero value means that the next token is not a parameter reference, a value of one
means that a parameter has been set and a value of two signals an empty parameter.
So, it reports the state of the given parameter as a kind if \ifcase.

\def\foo#1#2{ [\ifparameter#1\or(ONE)\fi\ifparameter#2\or(TWO)\fi] }
Of course the test has to be followed by a valid parameter specifier:

\foo{1}{2} \foo{1}{} \foo{}{2} \foo{}{}

The previous code gives this:

[(ONE)(TWO)] [(ONE)] [(TWO)] II

A combination check \ifparameters, again a case, matches the first parameter that
has a value set.

We could add plenty of specifiers but we need to keep in ind that we're not talking of an
expression scanner. We need to keep performance in mind, so nesting and backtracking
are no option. We also have a limited set of useable single characters, but here's one
that uses a symbol that we had left:

Definitions

109

\def\startfoo[#/]1#/\stopfoo{ [#1](#2) }

The slash directive removes leading and trailing so called spacers as well as tokens that
represent a paragraph end:

\startfoo [x] x \stopfoo
\startfoo [x] x \stopfoo
\startfoo [x] x \stopfoo
\startfoo [x] \par x \par \par \stopfoo

So we get this:
x x x x

The next directive, the quitter #;, is demonstrated with an example. When no match
has occurred, scanning picks up after this signal, otherwise we just quit.

\tolerant\def\foo [#1]#; (#2) {/#1/#2/}

\foo[l]\quad\foo[2]\quad\foo[3]\par
\foo(1)\quad\foo(2)\quad\foo(3)\par

\tolerant\def\foo [#1]1#;#={/#1/#2/}

\foo[1l]\quad\foo[2]\quad\foo[3]\par
\foo{l}\quad\foo{2}\quad\foo{3}\par

\tolerant\def\foo [#1]1#;#2{/#1/#2/}

\foo[1l]\quad\foo[2]\quad\foo[3]\par
\foo{1l}\quad\foo{2}\quad\foo{3}\par

\tolerant\def\foo [#1]#; (#2)#,#={/#1/#2/#3/}

\foo[1l]\quad\foo[2]\quad\foo[3]\par
\foo(1l)\quad\foo(2)\quad\foo(3)\par
\foo{l}\quad\foo{2}\quad\foo{3}\par

1210 131
120 113/
1210 1311
" 127 113/
121 13/
11127 113/

Definitions

110

i 12710 13111
Y 11211 11311
ML 121 13/

I have to admit that I don't really need it but it made some macros that I was redefining
behave better, so there is some self-interest here. Anyway, I considered some other
features, like picking up a detokenized argument but I don't expect that to be of much
use. In the meantime we ran out of reasonable characters, but some day #? and #!
might show up, or maybe I find a use for #< and #>. A summary of all this is given here:

+ keep the braces
- discard and don't count the argument

/ remove leading an trailing spaces and pars
= braces are mandate

B braces are mandate and kept

~ keep leading spaces

1-9 an argument

0 discard but count the argument

* ignore spaces

pick up scanning here
; quit scanning

ignore pars and spaces
) push back space when quit

The last two have not been discussed and were added later. The period directive gobbles
space and par tokens and discards them in the process. The comma directive is like *
but it pushes back a space when the matching quits.

\tolerant\def\foo[#1]#; (#2) {/#1/#2/}

\foo[l]\quad\foo[2]\quad\foo[3]\par
\foo(1)\quad\foo(2)\quad\foo(3)\par

\tolerant\def\foo [#1]1#;#={/#1/#2/}

\foo[1l]\quad\foo[2]\quad\foo[3]\par
\foo{l}\quad\foo{2}\quad\foo{3}\par

\tolerant\def\foo [#1]1#;#2{/#1/#2/}

\foo[1l]\quad\foo[2]\quad\foo[3]\par
\foo{l}\quad\foo{2}\quad\foo{3}\par

Definitions

111

\tolerant\def\foo[#1]1#; (#2)#;#={/#1/#2/#3/}

\foo[1l]\quad\foo[2]\quad\foo[3]\par
\foo(1)\quad\foo(2)\quad\foo(3)\par
\foo{l}\quad\foo{2}\quad\foo{3}\par

11211 1311
" 1127 113/
1211 1311
/11127 113/
11211 1311
/11127 113/
i 1211 13111
Y 11211 11311
L 12l 13/

Gobbling spaces versus pushing back is an interface design decision because it has to
do with consistency.

6.3 Runaway arguments

There is a particular troublesome case left: a runaway argument. The solution is not
pretty but it's the only way: we need to tell the parser that it can quit.

\tolerant\def\foo[#1=#2]1%
{\ifarguments 0O\or 1\or 2\or 3\or 4\fi:\vl\type{#1}\vl\type{#2}\vl}

The outcome demonstrates that one still has to do some additional checking for sane
results and there are alternative way to (ab)use this mechanism. It all boils down to a
clever combination of delimiters and \ignorearguments.

\dontleavehmode \foo[a=1]
\dontleavehmode \foo[b=]
\dontleavehmode \foo[=]

\dontleavehmode \foo[x]\ignorearguments

All calls are accepted:
21
2:b

2:
1:X]‘

Runaway arguments

112

Just in case you wonder about performance: don't expect miracles here. On the one
hand there is some extra overhead in the engine (when defining macros as well as
when collecting arguments during a macro call) and maybe using these new features
can sort of compensate that. As mentioned: the gain is mostly in cleaner macro code
and less clutter in tracing. And I just want the ConTgXt code to look nice: that way users
can look in the source to see what happens and not drown in all these show-off tricks,
special characters like underscores, at signs, question marks and exclamation marks.

For the record: I normally run tests to see if there are performance side effects and
as long as processing the test suite that has thousands of files of all kind doesn't take
more time it's okay. Actually, there is a little gain in ConTgXt but that is to be expected,
but I bet users won't notice it, because it's easily offset by some inefficient styling. Of
course another gain of loosing some indirectness is that error messages point to the
macro that the user called for and not to some follow up.

6.4 Introspection
A macro has a meaning. You can serialize that meaning as follows:

\tolerant\protected\def\ foo#1[#2]#*[#3]%
{(1=#1) (2=#3) (3=#3)}

\meaning\foo
The meaning of \foo comes out as:

tolerant protected macro:#1[#2]#*[#3]->(1=#1) (2=#3) (3=#3)
When you load the module system-tokens you can also say:
\luatokentable\foo
This produces a table of tokens specifications:

tolerant protected macro:#1[#2]#*[#3]->(1=#1) (2=#3) (3=#3)

tolerant protected control sequence: foo

596535 19 49 match argument 1
593075 12 91 other char [U+0005B
592468 19 50 match argument 2
592478 12 93 other char 1 U+0005D
596655 19 42 match argument *

Introspection

113

593541 12 91 otherchar [U+0005B
596370 19 51 match argument 3
596993 12 93 other char] U+0005D
593347 20 0 end match

324438 12 40 other char (U+00028
595449 12 49 other char 1 U+00031
594509 12 61 other char = U+0003D
595403 21 1 parameter reference

78942 12 41 other char) U+00029
592656 10 32 spacer

594053 12 40 other char (U+00028
593262 12 50 other char 2 U+00032
593475 12 61 other char = U+0003D
596726 21 3 parameter reference

596585 12 41 other char) U+00029
596834 10 32 spacer

587542 12 40 other char (U+00028
596723 12 51 other char 3 U+00033
593777 12 61 other char = U+0003D
594656 21 3 parameter reference

595488 12 41 other char) U+00029

A token list is a linked list of tokens. The magic numbers in the first column are the
token memory pointers. and because macros (and token lists) get recycled at some point
the available tokens get scattered, which is reflected in the order of these numbers.
Normally macros defined in the macro package are more sequential because they stay
around from the start. The second and third row show the so called command code and
the specifier. The command code groups primitives in categories, the specifier is an
indicator of what specific action will follow, a register number a reference, etc. Users
don't need to know these details. This macro is a special version of the online variant:

\showluatokens\ foo

That one is always available and shows a similar list on the console. Again, users nor-

mally don't want to know such details.

6.5 nesting

You can nest macros, as in:

\def\ foo#1#2{\def\oo f##1{<#1>##1<#2>}}

nesting

114

At first sight the duplication of # looks strange but this is what happens. When TgX
scans the definition of \foo it sees two arguments. Their specification ends up in the
preamble that defines the matching. When the body is scanned, the #1 and #2 are
turned into a parameter reference. In order to make nested macros with arguments
possible a # followed by another # becomes just one #. Keep in mind that the definition
of \oof is delayed till the macro \foo gets expanded. That definition is just stored and
the only thing that get's replaced are the two references to a macro parameter

control sequence: foo

596675 19 49 match argument 1
596630 19 50 match argument 2
595461 20 0 end match

596673 128 1 def def

478787 146 0 tolerant call oof

595362 6 35 parameter

596847 12 49 other char 1 U+00031

594176 1 123 left brace

594113 12 60 other char < U+0003C

596538 21 1 parameter reference

592255 12 62 other char > U+0003E

596697 6 35 parameter

596613 12 49 other char 1 U+00031

596873 12 60 other char < U+0003C

596832 21 2 parameter reference

595403 12 62 other char > U+0003E

596666 2 125 right brace

Now, when we look at these details, it might become clear why for instance we have
‘variable’ names like #4 and not #whatever (with or without hash). Macros are essen-
tially token lists and token lists can be seen as a sequence of numbers. This is not
that different from other programming environments. When you run into buzzwords
like ‘bytecode’ and ‘virtual machines’ there is actually nothing special about it: some
high level programming (using whatever concept, and in the case of TgX it's macros)
eventually ends up as a sequence of instructions, say bytecodes. Then you need some
machinery to run over that and act upon those numbers. It's something you arrive at
naturally when you play with interpreting languages.’

I actually did when I wrote an interpreter for some computer assisted learning system, think of a kind of
interpreted Pascal, but later realized that it was a a bytecode plus virtual machine thing. I'd just applied
what I learned when playing with eight bit processors that took bytes, and interpreted opcodes and such.

nesting

115

So, internally a #4 is just one token, a operator-operand combination where the operator
is “grab a parameter” and the operand tells “where to store” it. Using names is of course
an option but then one has to do more parsing and turn the name into a number?, add
additional checking in the macro body, figure out some way to retain the name for the
purpose of reporting (which then uses more token memory or strings). It is simply not
worth the trouble, let alone the fact that we loose performance, and when TgX showed
up those things really mattered.

It is also important to realize that a # becomes either a preamble token (grab an argu-
ment) or a reference token (inject the passed tokens into a new input level). Therefore
the duplication of hash tokens ## that you see in macro nested bodies also makes sense:
it makes it possible for the parser to distinguish between levels. Take:

\def\foo#l{\def\ooT##1{#1##1#1}}
Of course one can think of this:
\def\ foo#fence{\def\oof#text{#fence#text#fence}}

But such names really have to be unique then! Actually ConTEXt does have an input
method that supports such names, but discussing it here is a bit out of scope. Now,
imagine that in the above case we use this:

\def\foo[#1] [#2]{\def\ooT##1{#1##1#2}}

If you're a bit familiar with the fact that TgX has a model of category codes you can
imagine that a predictable “hash followed by a number” is way more robust than en-
forcing the user to ensure that catcodes of ‘names’ are in the right category (read: is
a bracket part of the name or not). So, say that we go completely arbitrary names, we
then suddenly needs some escaping, like:

\def\foo[#{left}] [#{right}]{\def\oof#{text}{#{left}#{text}#{right}}}

And, if you ever looked into macro packages, you will notice that they differ in the
way they assign category codes. Asking users to take that into account when defining
macros makes not that much sense.

So, before one complains about TEX being obscure (the hash thing), think twice. Your
demand for simplicity for your coding demand will make coding more cumbersome for

There's nothing spectacular about all this and I only realized decades later that the buzzwords describes
old natural concepts.

This is kind of what MetaPost does with parameters to macros. The side effect is that in reporting you get
text0, expr2 and such reported which doesn't make things more clear.

nesting

116

the complex cases that macro packages have to deal with. It's comparable using TgX for
input or using (say) mark down. For simple documents the later is fine, but when things
become complex, you end up with similar complexity (or even worse because you lost
the enforced detailed structure). So, just accept the unavoidable: any language has its
peculiar properties (and for sure I do know why I dislike some languages for it). The
TEX system is not the only one where dollars, percent signs, ampersands and hashes
have special meaning.

6.6 Prefixes

Traditional TgX has three prefixes that can be used with macros: \global, \outer and
\long. The last two are no-op's in LuaMetaTgX and if you want to know what they do
(did) you can look it up in the TgXbook. The e-TEX extension gave us \protected.

In LuaMetaTEX we have \global, \protected, \tolerant and overload related prefixes
like \frozen. A protected macro is one that doesn't expand in an expandable context,
so for instance inside an \edef. You can force expansion by using the \expand primitive
in front which is also something LuaMetaTgX.

Frozen macros cannot be redefined without some effort. This feature can to some extent
be used to prevent a user from overloading, but it also makes it harder for the macro
package itself to redefine on the fly. You can remove the lock with \unletfrozen and
add a lock with \letfrozen so in the end users still have all the freedoms that TgX
normally provides.

\def\foo{foo} 1: \meaning\foo
\frozen\def\foo{foo} 2: \meaning\foo

\unletfrozen \foo 3: \meaning\foo

\protected\frozen\def\foo{foo} 4: \meaning\foo

\unletfrozen \foo 5: \meaning\foo
macro:foo
macro:foo
macro:foo

: protected macro:foo
: protected macro:foo

g W

This actually only works when you have set \overloadmode to a value that permits
redefining a frozen macro, so for the purpose of this example we set it to zero.

A \tolerant macro is one that will quit scanning arguments when a delimiter cannot
be matched. We saw examples of that in a previous section.

Prefixes

117

These prefixes can be chained (in arbitrary order):
\frozen\tolerant\protected\global\def\foo [#1]#*[#2]{...}

There is actually an additional prefix, \immediate but that one is there as signal for a
macro that is defined in and handled by Lua. This prefix can then perform the same
function as the one in traditional TgX, where it is used for backend related tasks like
\write.

Now, the question is of course, to what extent will ConTEXt use these new features.
One important argument in favor of using \tolerant is that it gives (hopefully) better
error messages. It also needs less code due to lack of indirectness. Using \frozen adds
some safeguards although in some places where ConTgXt itself overloads commands,
we need to defrost. Adapting the code is a tedious process and it can introduce errors
due to mistypings, although these can easily be fixed. So, it will be used but it will take
a while to adapt the code base.

One problem with frozen macros is that they don't play nice with for instance \fu-
turelet. Also, there are places in ConTgXt where we actually do redefine some core
macro that we also want to protect from redefinition by a user. One can of course \un-
letfrozen such a command first but as a bonus we have a prefix \overloaded that can
be used as prefix. So, one can easily redefine a frozen macro but it takes a little effort.
After all, this feature is mainly meant to protect a user for side effects of definitions,
and not as final blocker.®

A frozen macro can still be overloaded, so what if we want to prevent that? For this we
have the \permanent prefix. Internally we also create primitives but we don't have a
prefix for that. But we do have one for a very special case which we demonstrate with
an example:

\def\FO0 % trickery needed to pick up an optional argument
{\noalign{\vskip10Opt}}

\noaligned\protected\tolerant\def\OOF[#1]%
{\noalign{\vskip\iftok{#1}\emptytokslOpt\else#1\fi}}

\starttabulate[|1|1]]
\NC test \NC test \NC \NR
\NC test \NC test \NC \NR

As usual adding features like this takes some experimenting and we're now at the third variant of the
implementation, so we're getting there. The fact that we can apply such features in large macro package
like ConTgXt helps figuring out the needs and best approaches.

Prefixes

118

\F00

\NC test \NC test \NC \NR

\OOF[30pt]

\NC test \NC test \NC \NR

\OOF

\NC test \NC test \NC \NR
\stoptabulate

When TgX scans input (from a file or token list) and starts an alignment, it will pick up
rows. When a row is finished it will look ahead for a \noalign and it expands the next
token. However, when that token is protected, the scanner will not see a \noalign in
that macro so it will likely start complaining when that next macro does get expanded
and produces a \noalign when a cell is built. The \noaligned prefix flags a macro as
being one that will do some \noalign as part of its expansion. This trick permits clean
macros that pick up arguments. Of course it can be done with traditional means but
this whole exercise is about making the code look nice.

The table comes out as:

test test
test test

test test

test test
test test

One can check the flags with \ifflags which takes a control sequence and a number,
where valid numbers are:

1 frozen 2 permanent 4 immutable 8 primitive
16 mutable 32 noaligned 64 instance

The level of checking is controlled with the \overloadmode but I'm still not sure about
how many levels we need there. A zero value disables checking, the values 1 and 3 give
warnings and the values 2 and 4 trigger an error.

6.7 Arguments

The number of arguments that a macro takes is traditionally limited to nine (or ten if one
takes the trailing # into account). That this is enough for most cases is demonstrated

Arguments

119

by the fact that ConTgXt has only a handful of macros that use #9. The reason for
this limitation is in part a side effect of the way the macro preamble and arguments are
parsed. However, because in LuaMetaTgX we use a different implementation, it was not
that hard to permit a few more arguments, which is why we support upto 15 arguments,
as in:

\def\ foo#1#2#3#A#5#06#7T#8#O#A#B#CHDH#EH#F{. ..}

We can support the whole alphabet without much trouble but somehow sticking to the
hexadecimal numbers makes sense. It is unlikely that the core of ConTgXt will use
this option but sometimes at the user level it can be handy. The penalty in terms of
performance can be neglected.

\tolerant\def\ foo#t=#=t=tt=t=t=tt=t=f=H=H=H=H=H=#=%
{(#1) (#2) (#3) (#4) (#5) (#6) (#7) (#8) (#9) (#A) (#B) (#C) (#D) (#E) (#F)}

\foo{1}{2}

In the previous example we have 15 optional arguments where braces are mandate
(otherwise we the scanner happily scoops up what follows which for sure gives some
error).

6.8 Constants

The LuaMetaTgX engine has lots of efficiency tricks in the macro parsing and expansion
code that makes it not only fast but also let is use less memory. However, every time that
the body of a macro is to be injected the expansion machinery kicks in. This often means
that a copy is made (pushed in the input and used afterwards). There are however cases
where the body is just a list of character tokens (with category letter or other) and no
expansion run over the list is needed.

It is tempting to introduce a string data type that just stores strings and although that
might happen at some point it has the disadvantage that one need to tokenize that string
in order to be able to use it, which then defeats the gain. An alternative has been found
in constant macros, that is: a macro without parameters and a body that is considered
to be expanded and never freed by redefinition. There are two variants:

\cdef \foo {whatever}
\cdefcsname foo\endcsname{whatever}

These are actually just equivalents to

\edef \foo {whatever}

Constants

120

\edefcsname foo\endcsname{whatever}

just to make sure that the body gets expanded at definition time but they are also marked
as being constant which in some cases might give some gain, for instance when used in
csname construction. The gain is less then one expects although there are a few cases
in ConTgXt where extreme usage of parameters benefits from it. Users are unlikely to
use these two primitives.

Another example of a constant usage is this:
\lettonothing\foo

which gives \foo an empty body. That one is used in the core, if only because it gives a
bit smaller code. Performance is no that different from

\let\foo\empty

but it saves one token (8 bytes) when used in a macro. The assignment itself is not that
different because \ foo is made an alias to \empty which in turn only needs incrementing
a reference counter.

6.9 Passing parameters

When you define a macro, the #1 and more parameters are embedded as a reference to
a parameter that is passed. When we have four parameters, the parameter stack has
four entries and when an entry is eventually accessed a new input level is pushed and
tokens are fetched from that list. This has some side effects when we check a parameter.
This can happen multiple times, depending on how often we access a parameter. Take
the following:

\def\oof#1{#1}

\tolerant\def\foo[#1]#*[#2]1%
{1:\ifparameter#l\or Y\else N\fi\quad
2:\ifparameter#2\or Y\else N\fi\quad
\oof{3:\ifparameter #1l\or Y\else N\fi\quad
4:\ifparameter #2\or Y\else N\fi\quad}%
\par}

\foo \foo[] \foo[][] \foo[A] \foo[A]l[B]

This gives:

Passing parameters

121

1:N 2:N 3:N 4:N
1:N 2:N 3:N 4:N
1:N 2:N 3:N 4:N
1:Y 2:N 3:Y 4:N
1:Y 2:Y 3:Y 4:Y

as you probably expect. However the first two checks are different from the embedded
checks because they can check against the parameter reference. When we expand \oof
its argument gets passed to the macro as a list and when the scanner collects the next
token it will then push the parameter content on the input stack. So, then, instead of
a reference we get the referenced parameter list. Internally that means that in 3 and
4 we check for a token and not for the length of the list (as in case 1 & 2). This means
that

\iftok{#1}\emptytoks Y\else N\fi
\ifparameter#l\or Y\else N\fi

are different. In the first case we have a proper token list and nested conditionals in
that list are okay. In the second case we just look ahead to see if there is an \or, \else
or other condition related command and if so we decide that there is no parameter. So,
if \ifparameter is a suitable check for empty depends on the need for expansion.

When you define macros that themselves call macros that should operate on the argu-
ments of its parent you can easily pass these:

\def\foo#1#2%
{\oof{#1}{#2}{P}%
\oof{#1}{#2}{Q}%
\oof{#1}{#2}{R}}

\def\oof#1#2#3%
{[#1] [#1]%
#3%
[#2]1[#2]}

Here the nested call to \oof involved three passed parameters. You can avoid that as
follows:

\def\foo#1#2%
{\def\MyIndexOne{#1}%
\def\MyIndexTwo{#2}%
\oof{P}\oof{Q}\oof{R}}

Passing parameters

122

\def\oof#1%
{(\MyIndexOne) (\MyIndex0One)%%
#1%
(\MyIndexTwo) (\MyIndexTwo)}

You can also do this:

\def\foo#1#2%
{\def\oof##1%
{/#1/#2/%
##1%
/#1//#2/}%
\oof{P}\oof{Q}\oof{R}}

These parameters indicated by # in the macro body are in fact references. When we call
for instance \foo{1}{2} the two parameters get pushed on a parameter stack and the
embodied references point to these stack entries. By the time that body gets expanded
TEX bumps the input level and pushes the parameter list onto the input stack. It then
continues expansion. The parameter is not copied, because it can't be changed anyway.
The only penalty in terms of performance and memory usage is the pushing and popping
of the input. So how does that work out for these three cases?

When in the first case the \oof{#1}{#2}{P} is seen, TgX starts expanding the \oof
macro. That one expects three arguments. The #1 reference is seen and in this case
a copy of that parameter is passed. The same is true for the other two. Then, inside
\oof expansion happens on the parameters on the stack and no copies have to be made
there.

The second case defines two macros so again two copies are made that make the bodies
of these macros. This comes at the cost of some runtime and memory. However, this
time with \oof{P} only one argument gets passed and instead expansion of the macros
happen in there.

Normally macro arguments are not that large but there can be situations where we
really want to avoid useless copying. This not only saves memory but also can give a
bit better performance. In the examples above the second variant is some 10%faster
than the first one. We can gain another 10%with the following trick:

\def\foo#1#2%
{\parameterdef\MyIndexOne\plusone % 1
\parameterdef\MyIndexTwo\plustwo % 2
\oof{P}\oof{Q}\oof{R}\norelax}

Passing parameters

123

\def\oof#1%
{<\MyIndexOne><\MyIndex0One>%
#1%
<\MyIndexTwo><\MyIndexTwo>}

Here we define an explicit parameter reference that we access later on. There is the
overhead of a definition but it can be neglected. We use that reference (abstraction) in
\oof. Actually you can use that reference in any call down the chain.

When applied to \foo{1}{2} the four variants above give us:

[11[1]P[2][2]1[1][1]Q[2][2][1][1]R[2][2]
(1) (1)P(2) (2) (1) (1)Q(2) (2) (1) (1)R(2) (2)
/1/2/P/1//2//1/2/Q/1//2//1/2/R/1//2/

<1><1>P<2><2><1><1>Q<2><2><1><1>R<2><2>
Before we had parameterdef we had this:

\def\foo#1#2%
{\integerdef\MyIndexOne\parameterindex\plusone % 1
\integerdef\MyIndexTwo\parameterindex\plustwo % 2
\oof{P}\oof{Q}\oof{R}\norelax}

\def\oof#1%
{<\expandparameter\MyIndex0One><\expandparameter\MyIndex0One>%
#1%
<\expandparameter\MyIndexTwo><\expandparameter\MyIndexTwo>}

It involves more tokens, is a bit less abstract, but as it is a cheap extension we kept it.
It actually demonstrates that one can access parameters in the stack by index, but it
one then needs to keep track of where access takes place. In principle one can debug
the call chain this way.

To come back to performance and memory usage, when the arguments become larger
the fourth variant with the \parameterdef quickly gains over the others. But it only
shows in exceptional usage. This mechanism is more about abstraction: it permits
us to efficiently turn arguments into local variables without the overhead involved in
creating macros. You can test if a parameter is set

\tolerant\protected\def\MyMacro [#1]#:#2%
{\parameterdef\MyArgumentOne\plusone
\parameterdef\MyArgumentTwo\plustwo
\ifparameter\MyArgumentOne\or

Passing parameters

124

(\MyArgumentOne)
\fi
/\MyArgumentTwo/}

\MyMacro[one] {two}
\MyMacro{two}

Indeed we get:
(one) /two/ /two/

Of course \ifparameter#l\or. .. is more efficient but once you use named parameters
like this it's probably not something you're worry too much about,

6.10 Nesting

We also have a few preamble features that relate to nesting. Although we can do without
(as shown for years in LMTX) they do have some benefits. They are discussed as group
here and because they are only useful for low level programming we stick to simple
examples. The #L and #R use the following token as delimiters. Here we use [and]
but they can be a \cs as well. Nested delimiters are handled well.

The #S grabs the argument till the next final square bracket] but in the process will
grab nested with it sees a [. The #P does the same for parentheses and #X for angle
brackets. In the next examples the #* just gobbles optional spaces but we've seen that
one already.

The #G argument just registers the next token as delimiter but it will grab multiple of
them. The #M gobbles more: in addition to the delimiter spaces are gobbled.

\tolerant\def\fooA [#11{(#1)}
\tolerant\def\fooB [#L[#R1#1{(#1)}
\tolerant\def\fooC #SH1{ (#1)}
\tolerant\def\fooE #S#1,{(#1)}
\tolerant\def\fooF #SHI#*#SH2{ (#1/#2) }

\tolerant\def\fooG [#1]1#S[#2]1#*#S[#3]1{(#1/#2/#3)}
\tolerant\def\fooH [#1][#S#21#*[#S#3]1{(#1/#2/#3)}

\tolerant\def\fool #1=#2#G, { (#1=#2)}
\tolerant\def\fool] #1=#2#M, { (#1=#2)}
\fooA[x] (x) (x)
\fooB[x] (x) (x)

Nesting

125

\fooC[1[2]3[4]5] ([1[2]13[4]15]) (1[2]13[415)
\fooE X[, IX, (X[, 1X) (X[, 1X)
\fooF[A] [B] ([Al1/1B]) (A/B)
\fooF[] [] ([1/101) (/)
\fooG[a][b][c] (a/b/c) (a/b/c)
\fooG[a][b] (a/b/) (a/b/)
\fooG[a] (a//) (a//)

\fooG[a] [x[x]x][c] (a/x[x]x/c) (a/x[x]x/c)
\fooH[a] [x[x]x][c] (a/x[x]x/c) (a/x[x]x/c)
\fool X=X,,, (X=X) (X=X)
\fool X=X, , , (X=X) (X=X)

These features make it possible to support nested setups more efficiently and also
makes it possible to accept values that contain balanced brackets in setup commands
without additional overhead. Although it has never been an issue to let users specify:

\defineoverlay[whatever][{some \command[withparameters] here}]

\setupfoo[before={\blank[big]}]
it might be less confusing to permit:

\defineoverlay[whatever][some \command[withparameters] here]

\setupfoo[before=\blank[big]]

as well, if only because occasionally users get hit by this.

6.11 Duplicate hashes

In TEX every character has a so called category code. Most characters are classified as
‘letter’ (they make up words) or as ‘other’. In Unicode we distinguish symbols, punc-
tuation, and more, but in TgX these are all of category ‘other’. In math however we
can classify them differently but in this perspective we ignore that. The backslash has
category ‘escape’ and it starts a control sequence. The curly braces are (internally) of
category ‘left brace’ and ‘right brace’ aka ‘begin group’ and ‘end group’ but, no matter
what they are called, they begin and end something: a group, argument, token list, box,
etc. Any character can have those categories. Although it would look strange to a TEX
user, this can be made valid:

I'protected !'gdef !'weirdql
B

Duplicate hashes

126

something: 91
E
lweird BhereE

In such a setup spaces can be of category ‘invisible’. The paragraph symbol takes the
place of the hash as parameter identifier. The next code shows how this is done. Here
we wrap all in a macro so that we don't get catcode interference in the document source.

\def\NotSoTeX
{\begingroup
\catcode "B \begingroupcatcode
\catcode "E \endgroupcatcode
\catcode "9 \parametercatcode
\catcode ! \escapecatcode
\catcode 32 \ignorecatcode
\catcode 13 \ignorecatcode
% this buffer has a definition:
\getbuffer
% which is now known globally
\endgroup}

\NotSoTeX

\weird{there}

This results in:

something:here
something:there

In the first line the !, B and E are used as escape and argument delimiters, in the second
one we use the normal characters. When we show the \meaningasis we get:

\global \protected \def \weird #l{something:#1}

or in more detail:

protected control sequence: weird

595550 19 49 match argument 1
592926 20 0 end match

5906400 11 115 letter s U+00073
596569 11 111 letter o U+0006F
507393 11 109 letter m U+0006D
505395 11 101 letter e U+00065

Duplicate hashes

127

503888 11 116 letter t U+00074
596828 11 104 letter h U+00068
595258 11 105 letter i U+00069
596573 11 110 letter n U+0006E
596703 11 103 Tletter g U+00067

596657 12 58 other char : U+0003A
596535 21 1 parameter reference

So, no matter how we set up the system, in the end we get some generic representation.
When we see #1 in ‘print’ it can be either two tokens, # (catcode parameter) followed
by 1 with catcode other, or one token referring to parameter 1 where the character 1
is the opcode of an internal ‘reference command’. In order to distinguish a reference
from the two token case, parameter hash tokens get shown as doubles.

\def\test #1{x#1x##1x####1x}
\def\tset 1{xN11xT91xN9991x}

And with \meaning we get, consistent with the input:

macro:#1 ->xX#1X#HLX####LX
macro:#1->x#1IxNM91xN9991x

These are equivalent, apart from the parameter character in the body of the definition:

control sequence: test

592771 19 49 match argument 1
597479 20 0 end match

597401 11 120 1letter x U+00078

596539 21 1 parameter reference

594495 11 120 letter x U+00078

596074 6 35 parameter

597853 12 49 other char 1 U+00031

596995 11 120 Tletter x U+00078

593782 6 35 parameter
593080 6 35 parameter
597474 12 49 other char 1 U+00031
595858 11 120 letter x U+00078

control sequence: tset

597604 19 49 match argument 1

Duplicate hashes

128

596685 20 0 end match

596872 11 120 Tletter x U+00078
593100 21 1 parameter reference

595820 11 120 letter x U+00078
593663 6 182 parameter

597605 12 49 other char 1 U+00031
596874 11 120 Tletter x U+00078

597439 6 182 parameter
596998 6 182 parameter
597180 12 49 other char
597735 11 120 letter

=

U+00031
U+00078

X

Watch how every ‘parameter’ is just a character with the Unicode index of the used
input character as property. Let us summarize the process. When a single parameter
character is seen in the input, the next characer determines how it will be interpreted.
If there is a digit then it becomes a reference to a parameter in the preamble, and
when followed by another parameter character it will be appended to the body of the
macro and that second one is dropped. So, two parameter characters become one,
and four become two. One parameter character becomes a reference and from that
you can guess what three in a row become. However, when TgX is showing the macro
definition (using meaning) the hashes get duplicated in order to distinguish parameter
references from parameter characters that were kept (e.g. for nested definitions). One
can make an argument for \parameterchar as we also have \escapechar but by now
this convention is settled and it doesn't look that bad anyway.

We now come to the more tricky part with respect to the doubling of hashes. When TgX
was written its application landscape looked a bit different. For instance, fonts were
limited and therefore it was natural to access special characters by name. Using \#
to get a hash in the text was not that problematic, if one needed that character at all.
The same can be said for the braces, backslash and even the dollar (after all TEX is free
software).

But what if we have more visualization and/or serialization than meanings and tracing?
When we opened op the internals in LuaTgX and even more in LuaMetaTgX the duplicat-
ing of hashes became a bit of a problem. There we don't need to distinguish between a
parameter reference and a parameter character because by that time these references
are resolved. All hashes that we encounter are just that: hashes. And this is why in
LuaMetaTEgX we disable the duplication for those cases where it serves no purpose.

When the engine scans a macro definition it starts with picking up the name of the
macro. Then it starts scanning the preamble up to the left brace. In the preamble of a

Duplicate hashes

129

macro the scanner converts hashes followed by another token into single match token.
Then when the macro body is scanned single hashes followed by a number become a
reference, while double hashes become one hash and get interpreted at expansion time
(possibly triggering an error when not followed by a valid specifier like a number). In
traditional TeX we basically had this:

\def\test#1{#1}
\def\test#1{##}
\def\test#1{#X}
\def\test#1{##1}

There can be a trailing # in the preamble for special purposes but we forget about
that now. The first definition is valid, the second definition is invalid when the macro is
expanded and the third definition triggers an error at definition time. The last definition
will again trigger an error at expansion time.

However, in LuaMetaTEX we have an extended preamble where the following preamble
parameters are handled (some only in tolerant mode):

#n parameter index 1 upto E
#0 throw away parameter increment index
#- ignore parameter keep index

#* gobble white space

#+ keep (honor) the braces

#. ignore pars and spaces

#, push back space when no match

#/ remove leading and trailing spaces and pars
= braces are mandate

#~ keep leading spaces

braces are mandate and kept (obey)

#@ par delimiter only for internal usage

#: pick up scanning here
#, quit scanning

#L left delimiter token followed by token
#R right delimiter token followed by token
#G gobble token followed by token
#M gobble token and spaces followed by token

Duplicate hashes

130

#S nest square brackets only inner pairs
#X nest angle brackets only inner pairs
#P nest parentheses only inner pairs

As mentioned these will become so called match tokens and only when we show the
meaning the hash will show up again.

\def\test[#1]#*[*S#2]{.#1.#2.}

control sequence: test

593067 12 91 other char [U+0005B

219469 19 49 match argument 1
596723 12 93 other char] U+0005D

592667 19 42 match argument *
597174 12 91 other char [U+0005B

595421 12 42 other char * U+0002A

595815 11 83 letter S U+00053

595467 19 50 match argument 2
593180 12 93 other char] U+0005D

596962 20 0 end match

596803 12 46 other char . U+0002E

595850 21 1 parameter reference

597487 12 46 other char . U+0002E

596760 21 2 parameter reference

597883 12 46 other char . U+0002E

This means that in the body of a macro you will not see #* show up. It is just a directive
that tells the macro parser that spaces are to be skipped. The #S directive makes the
parser for the second parameter handle nested square bracket. The only hash that we
can see end up in the body is the one that we entered as double hash (then turned single)
followed by (in traditional terms) a number that when all gets parsed with then become
a reference: the sequence ##1 internally is #1 and becomes ‘reference to parameter
1’ assuming that we define a macro in that body. If no number is there, an error is
issued. This opens up the possibility to add more variants because it will only break
compatibility with respect to what is seen as error. As with the preamble extensions,
old documents that have them would have crashed before they became available.

So, this means that in the body, and actually anywhere in the document apart from
preambles, we now support the following general parameter specifiers. Keep in mind
that they expand in an expansion context which can be tricky when they overlap with

Duplicate hashes

131

preamble entries, like for instance #R in such an expansion. Future extensions can add
more so any hashed shortcut is sensitive for that.

#I current iterator \currentloopiterator
#P parent iterator \previousloopiterator 1
#G grandparent iterator \previousloopiterator 2

#H hash escape #
#S space escape [
#T tab escape \t
#L newline escape \n
#R return escape \r

#X Dbackslash escape \

#N nbsp U+00AO (under consideration)
#7 zZws U+200B (under consideration)

Some will now argue that we already have ~” escapes in TgX and ~*"*" and ~*"*""" in
LuaTgX and that is true. However, these can be disabled, and in ConTgXt they are, where
we instead enable the prescript, postscript, and index features in mathmode and there
type © and are used. Even more: in ConTgXt we just let ©, and & be what they are.
Occasionally I consider $ to be just that but as I don't have dollars I will happily leave
that for inline math. When users are not defining macros or are using the alternative
definitions we can consider making the # a hash. An excellent discussion of how TgX
reads it's input and changes state accordingly can be found in Victor Eijkhouts “TgX By
Topic”, section 2.6: when "~ is followed by a character with v < 128 the interpreter will
inject a character with code v — 64. When followed by two (!) lowercase hexadecimal
characters, the corresponding character will be injected. Anyway, it not only looks kind
of ugly, it also is somewhat weird because what follows is interpreted mixed way. The
substitution happens early on (which is okay). But, how about the output? Traditional
TEX serializes special characters with a similar syntax but that has become optional
when eight bit mode was added to the engines, it is configurable in LuaTgX and has
been dropped in LuaMetaTgX: we operate in a utf universum.

6.11 Colofon

Author Hans Hagen

ConTgXt 2025.02.19 14:35
LuaMetaTgX 2.11.07 ‘ 20250219
Support www.pragma-ade.com

contextgarden.net
ntg-context@ntg.nl

Colofon

132

7 Grouping

low level

1EX

grouping

133

Contents

7.1 Introduction 133
7.2 Kinds of grouping 135
7.3 Hooks 137
7.4 Local versus global 138
7.5 Files 141

7.1 Introduction

This is a rather short explanation. I decided to write it after presenting the other topics
at the 2019 ConTgXt meeting where there was a question about grouping.

7.1.1 Pascal

In a language like Pascal, the language that TEX has been written in, or Modula, its
successor, there is no concept of grouping like in TEX. But we can find keywords that
suggests this:

for i := 1 to 10 do begin ... end

This language probably inspired some of the syntax of TgX and MetaPost. For instance
an assignment in MetaPost uses :=too. However, the begin and end don't really group
but define a block of statements. You can have local variables in a procedure or function
but the block is just a way to pack a sequence of statements.

7.1.2 TEX

In TEX macros (or source code) the following can occur:
\begingroup

\endéééup

as well as:

\bgroup

\egroup

Introduction

134

Here we really group in the sense that assignments to variables inside a group are
forgotten afterwards. All assignments are local to the group unless they are explicitly
done global:

\scratchcounter=1

\def\foo{foo}

\begingroup
\scratchcounter=2
\global\globalscratchcounter=2
\gdef\foo{F00}

\endgroup

Here \scratchcounter is still one after the group is left but its global counterpart is
now two. The \foo macro is also changed globally.

Although you can use both sets of commands to group, you cannot mix them, so this
will trigger an error:

\bgroup
\endgroup

The bottomline is: if you want a value to persist after the group, you need to explicitly
change its value globally. This makes a lot of sense in the perspective of TEX.

7.1.3 MetaPost

The MetaPost language also has a concept of grouping but in this case it's more like a
programming language.

begingroup ;
n := 123 ;
endgroup ;

In this case the value of n is 123 after the group is left, unless you do this (for numerics
there is actually no need to declare them):

begingroup ;
save n ; numeric n ; n := 123 ;
endgroup ;

Given the use of MetaPost (read: MetaFont) this makes a lot of sense: often you use
macros to simplify code and you do want variables to change. Grouping in this language

Introduction

135

serves other purposes, like hiding what is between these commands and let the last
expression become the result. In a vardef grouping is implicit.

So, in MetaPost all assignments are global, unless a variable is explicitly saved inside a
group.

7.1.4 Lua

In Lua all assignments are global unless a variable is defines local:

local x =1

local vy =1

for i = 1, 10 do
local x = 2
y =2

end

Here the value of x after the loop is still one but y is now two. As in LuaTgX we mix TgX,
MetaPost and Lua you can mix up these concepts. Another mixup is using :=, endfor,
fiin Lua after done some MetaPost coding or using end instead of endfor in MetaPost
which can make the library wait for more without triggering an error. Proper syntax
highlighting in an editor clearly helps.

7.1.5 C

The Lua language is a mix between Pascal (which is one reason why I like it) and C.

int x =1 ;

inty=1;

for (i=1; i<=10;i++) {
int x = 2 ;
y=2;

}

The semicolon is also used in Pascal but there it is a separator and not a statement end,
while in MetaPost it does end a statement (expression).

7.2 Kinds of grouping

Explicit grouping is accomplished by the two grouping primitives:

Kinds of grouping

136

\begingroup
\sl render slanted here
\endgroup

However, often you will find this being used:
{\sl render slanted here}

This is not only more compact but also avoids the \endgroup gobbling following spaces
when used inline. The next code is equivalent but also suffers from the gobbling:

\bgroup
\sl render slanted here
\egroup

The \bgroup and \egroup commands are not primitives but aliases (made by \let) to
the left and right curly brace. These two characters have so called category codes that
signal that they can be used for grouping. The can be here suggest that there are other
purposes and indeed there are, for instance in:

\toks 0 = {abs}
\hbox {def}

In the case of a token list assignment the curly braces fence the assignment, so scanning
stops when a matching right brace is found. The following are all valid:

\toks 0 = {a{b}s}

\toks 0 = \bgroup a{b}s}

\toks 0 = {a{\bgroup b}s}

\toks 0 = {a{\egroup b}s}

\toks 0 = \bgroup a{\bgroup b}s}
\toks 0 = \bgroup a{\egroup b}s}

They have in common that the final fence has to be a right brace. That the first one can
be a an alias is due to the fact that the scanner searches for a brace equivalent when
it looks for the value. Because the equal is optional, there is some lookahead involved
which involves expansion and possibly push back while once scanning for the content
starts just tokens are collected, with a fast check for nested and final braces.

In the case of the box, all these specifications are valid:

\hbox {def}
\hbox \bgroup def\egroup

Kinds of grouping

137

\hbox \bgroup def}
\hbox \bgroup d{e\egroup f}
\hbox {def\egroup

This is because now the braces and equivalent act as grouping symbols so as long as
they match we're fine. There is a pitfall here: you cannot mix and match different
grouping, so the next issues an error:

\bgroup xxx\endgroup % error
\begingroup xxx\egroup % error

This can make it somewhat hard to write generic grouping macros without trickery that
is not always obvious to the user. Fortunately it can be hidden in macros like the helper
\groupedcommand. In LuaMetaTgX we have a clean way out of this dilemma:

\beginsimplegroup xxx\endsimplegroup
\beginsimplegroup xxx\endgroup
\beginsimplegroup xxx\egroup

When you start a group with \beginsimplegroup you can end it in the three ways shows
above. This means that the user (or calling macro) doesn't take into account what kind
of grouping was used to start with.

When we are in math mode things are different. First of all, grouping with \begin-
group and \endgroup in some cases works as expected, but because the math input is
converted in a list that gets processed later some settings can become persistent, like
changes in style or family. You can bet better use \beginmathgroup and \endmathgroup
as they restore some properties. We also just mention the \frozen prefix that can be
used to freeze assignments to some math specific parameters inside a group.

7.3 Hooks

In addition to the original \aftergroup primitive we have some more hooks. They can
best be demonstrated with an example:

\begingroup \bf

0/0

\aftergroup A \aftergroup 1
\atendofgroup B \atendofgroup 1

%

\aftergrouped {A2}
\atendofgrouped {B2}

Hooks

138

%

test
\endgroup

These collectors are accumulative. Watch how the bold is applied to what we inject
before the group ends.

test BIB2A1A2

7.4 Local versus global

When TgX enters a group and an assignment is made the current value is stored on the
save stack, and at the end of the group the original value is restored. In LuaMetaTgX
this mechanism is made a bit more efficient by avoiding redundant stack entries. This
is also why the next feature can give unexpected results when not used wisely.

Now consider the following example:
\newdimension\MyDimension

\starttabulate[||| |]

\NC \MyDimensionl@Opt \the\MyDimension

\NC \advance\MyDimensionlOpt \the\MyDimension

\NC \advance\MyDimensionlOpt \the\MyDimension \NC \NR

\NC \MyDimensionl@Opt \the\MyDimension

\NC \advance\MyDimensionl@pt \the\MyDimension

\NC \advance\MyDimensionlOpt \the\MyDimension \NC \NR
\stoptabulate

10.0pt 10.0pt 10.0pt
10.0pt 10.0pt 10.0pt

The reason why we get the same values is that cells are a group and therefore the value
gets restored as we move on. We can use the \global prefix to get around this

\starttabulate[||||]
\NC \global \MyDimensionlOpt \the\MyDimension
\NC \global\advance\MyDimensionlOpt \the\MyDimension
\NC \global\advance\MyDimensionl@pt \the\MyDimension \NC \NR
\NC \global \MyDimensionlOpt \the\MyDimension
\NC \global\advance\MyDimensionlOpt \the\MyDimension
\NC \global\advance\MyDimensionlOpt \the\MyDimension \NC \NR

Local versus global

139

\stoptabulate

10.0pt 20.0pt 30.0pt
10.0pt 20.0pt 30.0pt

Instead of using a global assignment and increment we can also use the following

\constrained\MyDimension\zeropoint
\starttabulate[||| |]
\NC \retained \MyDimensionl@pt \the\MyDimension
\NC \retained\advance\MyDimensionlOpt \the\MyDimension
\NC \retained\advance\MyDimensionlOpt \the\MyDimension \NC \NR
\NC \retained \MyDimensionl@pt \the\MyDimension
\NC \retained\advance\MyDimensionlOpt \the\MyDimension
\NC \retained\advance\MyDimensionl®pt \the\MyDimension \NC \NR
\stoptabulate

10.0pt 20.0pt 30.0pt
10.0pt 20.0pt 30.0pt

So what is the difference with the global approach? Say we have these two buffers:

\startbuffer[one]

\global\MyDimension\zeropoint

\framed {
\framed {\globalladvance\MyDimensionlOpt \the\MyDimension}
\framed {\globalladvance\MyDimensionlOpt \the\MyDimension}

}

\framed {
\framed {\globall\advance\MyDimensionlOpt \the\MyDimension}
\framed {\global\advance\MyDimensionlOpt \the\MyDimension}

}
\stopbuffer

\startbuffer[two]
\global\MyDimension\zeropoint
\framed {
\framed {\global\advance\MyDimensionlOpt \the\MyDimension}
\framed {\globalladvance\MyDimensionlOpt \the\MyDimension}
\getbuffer[one]

¥
\framed {

Local versus global

140

\framed {\globalladvance\MyDimensionlOpt \the\MyDimension}
\framed {\global\advance\MyDimensionlOpt \the\MyDimension}
\getbuffer[one]

}
\stopbuffer

Typesetting the second buffer gives us:

10.0pt||20.0pt| || |130.0pt||40.0pt

10.0pt||20.0pt

50.0pt||60.0pt 10.0pt||20.0pt| || |30.0pt||40.0pt

When we want to have these entities independent and not use different variables, the
global settings bleeding from one into the other entity is messy. Therefore we can use
this:

\startbuffer[one]
\constrained\MyDimension\zeropoint
\framed {
\framed {\retained \MyDimensionl@pt \the\MyDimension}
\framed {\retained\advance\MyDimensionlOpt \the\MyDimension}
}
\framed {
\framed {\retained \MyDimensionl@pt \the\MyDimension}
\framed {\retained\advance\MyDimensionl®pt \the\MyDimension}
}
\stopbuffer
\startbuffer[two]
\constrained\MyDimension\zeropoint
\framed {
\framed {\retained\advance\MyDimensionlOpt \the\MyDimension}
\framed {\retained\advance\MyDimensionl@pt \the\MyDimension}
\getbuffer[one]
}
\framed {
\framed {\retained\advance\MyDimensionl®pt \the\MyDimension}
\framed {\retained\advance\MyDimensionlOpt \the\MyDimension}
\getbuffer[one]
}

Local versus global

141

\stopbuffer

Now we get this:

10.0pt|[20.0pt|| [19-0Pt][20.0pt] || |10.0pt]|20.0pt

10.0pt||20.0pt| || [10.0pt||20.0pt

30.0pt||40.0pt

The \constrained prefix makes sure that we have a stack entry, without being clever
with respect to the current value. Then the \retained prefix can do its work reliably
and avoid pushing the old value on the stack. Without the constrain it gets a bit unpre-
dictable because then it all depends on where further up the chain the value was put on
the stack. Of course one can argue that we should not have the “save stack redundant
entries optimization” but that's not going to be removed.

7.5 Files

Although it doesn't really fit in this chapter, here are some hooks into processing files:
Hello World!'\atendoffiled {\writestatus{FILE}{ATEOF B #1}}\par
Hello World!\atendoffiled {\writestatus{FILE}{ATEOF A #1}}\par

Hello World!\atendoffiled reverse {\writestatus{FILE}{ATEOF C #1}}\par
Hello World!\begingroup\sl \atendoffiled {\endgroup}\par

Inside a file you can register tokens that will be expanded when the file ends. You can
also do that beforehand using a variant of the \input primitive:

\eofinput {\writestatus{FILE}{DONE}} {thatfile.tex}

This feature is mostly there for consistency with the hooks into groups and paragraphs
but also because \everyeof is kind of useless given that one never knows beforehand
if a file loads another file. The hooks mentioned above are bound to the current file.

7.5 Colofon

Author Hans Hagen

ConTgXt 2025.02.19 14:35
LuaMetaTgX 2.11.07 ‘ 20250219
Support www.pragma-ade.com

contextgarden.net
ntg-context@ntg.nl

Files

142

8 Security

low level

1EX

security

143

Contents

8.1 Preamble 143
8.2 Flags 143
8.3 Complications 146
8.4 Introspection 147

8.1 Preamble

Here I will discuss a moderate security subsystem of LuaMetaTgX and therefore Con-
TEXt LMTX. This is not about security in the sense of the typesetting machinery doing
harm to your environment, but more about making sure that a user doesn't change
the behavior of the macro package in ways that introduce interference and thereby
unwanted side effect. It's all about protecting macros.

This is all very experimental and we need to adapt the ConTgXt source code to this.
Actually that will happen a few times because experiments trigger that. It might take
a few years before the security model is finalized and all files are updated accordingly.
There are lots of files and macros involved. In the process the underlying features in
the engine might evolve.

8.2 Flags

Before we go into the security levels we see what flags can be set. The TgX language
has a couple of so called prefixes that can be used when setting values and defining
macros. Any engine that has traditional TEX with £-TEX extensions can do this:

\def\foo{foo}
\global \def\foo{foo}
\global\protected\def\foo{foo}

And LuaMetaTgX adds another one:

\tolerant \def\foo{foo}
\global\tolerant \def\foo{foo}
\global\tolerant\protected\def\foo{foo}

What these prefixes do is discussed elsewhere. For now is is enough to know that
the two optional prefixes \protected and \tolerant make for four distinctive cases of
macro calls.

Preamble

144

But there are more prefixes:

frozen a macro that has to be redefined in a managed way

permanent a macro that had better not be redefined

primitive a primitive that normally will not be adapted

immutable a macro or quantity that cannot be changed, it is a constant
mutable a macro that can be changed no matter how well protected it is

instance a macro marked as (for instance) be generated by an interface

noaligned the macro becomes acceptable as \noalign alias

overloaded when permitted the flags will be adapted
enforced all is permitted (but only in zero mode or ini mode)
aliased the macro gets the same flags as the original

These prefixed set flags to the command at hand which can be a macro but basically
any control sequence.

To what extent the engine will complain when a property is changed in a way that
violates the above depends on the parameter \overloadmode. When this parameter is
set to zero no checking takes place. More interesting are values larger than zero. If
that is the case, when a control sequence is flagged as mutable, it is always permitted to
change. When it is set to immutable one can never change it. The other flags determine
the kind of checking done. Currently the following overload values are used:

immutable permanent primitive frozen instance

1 warning * * *

2 error * * *

3 warning * * * *

4 error * * * *

5 warning * * * * *
6 error * * * * *

The even values (except zero) will abort the run. In ConTEXt we plug in a callback that
deals with the messages. A value of 255 will freeze this parameter. At level five and
above the instance flag is also checked but no drastic action takes place. We use this
to signal to the user that a specific instance is redefined (of course the definition macros
can check for that too).

So, how does it work. The following is okay:

\def\MacroA{A}
\def\MacroB{B}

Flags

145

\let\MyMacro\MacroA
\let\MyMacro\MacroB

The first two macros are ordinary ones, and the last two lines just create an alias. Such
an alias shares the definition, but when for instance \MacroA is redefined, its new mean-
ing will not be reflected in the alias.

\permanent\protected\def\MacroA{A}
\permanent\protected\def\MacroB{B}
\let\MyMacro\MacroA
\let\MyMacro\MacroB

This also works, because the \let will create an alias with the protected property but
it will not take the permanent propery along. For that we need to say:

\permanent\protected\def\MacroA{A}
\permanent\protected\def\MacroB{B}
\permanent\let\MyMacro\MacroA
\permanent\let\MyMacro\MacroB

or, when we want to copy all properties:

\permanent\protected\def\MacroA{A}
\permanent\protected\def\MacroB{B}
\aliased\let\MyMacro\MacroA
\aliased\let\MyMacro\MacroB

However, in ConTEXt we have commands that we like to protect against overloading but
at the same time have a different meaning depending on the use case. An example is
the \NC (next column) command that has a different implementation in each of the table
mechanisms.

\permanent\protected\def\NC in table {...}
\permanent\protected\def\NC in tabulate{...}
\aliased\1let\NC\NC in table
\aliased\1let\NC\NC in tabulate

Here the second aliasing of \NC fails (assuming of course that we enabled overload
checking). One can argue that grouping can be used but often no grouping takes place
when we redefine on the fly. Because frozen is less restrictive than primitive or
permanent, and of course immutable, the next variant works:

\frozen\protected\def\NC in table {...}

Flags

10

146

\frozen\protected\def\NC in tabulate{...}
\overloaded\1let\NC\NC in table
\overloaded\let\NC\NC in tabulate

However, in practice, as we want to keep the overload checking, we have to do:

\frozen\protected\def\NC in table {...}
\frozen\protected\def\NC in tabulate{...}
\overloaded\frozen\let\NC\NC_in_table
\overloaded\frozen\let\NC\NC in tabulate

or use \aliased, but there might be conflicting permissions. This is not that nice, so
there is a kind of dirty trick possible. Consider this:

\frozen\protected\def\NC in table {...}
\frozen\protected\def\NC in tabulate{...}

\def\setNCintable {\enforced\let\frozen\let\NC\NC in table}
\def\setNCintabulate{\enforced\let\frozen\let\NC\NC in tabulate}

When we're in so called initex mode or when the overload mode is zero, the \enforced
prefixis internalized in a way that signals that the follow up is not limited by the overload
mode and permissions. This definition time binding mechanism makes it possible to use
permanent macros that users cannot redefine, but existing macros can, unless of course
they tweak the mode parameter.

Now keep in mind that users can always cheat but that is intentional. If you really want
to avoid that you can set the overload mode to 255 after which it cannot be set any
more. However, it can be useful to set the mode to zero (or some warning level) when
foreign macro packages are used.

8.3 Complications

One side effect of all this is that all those prefixes can lead to more code. On the other
hand we save some due to the extended macro argument handling features. When you
take the size of the format file as reference, in the end we get a somewhat smaller file.
Every token that you add of remove gives a 8 bytes difference. The extra overhead that
got added to the engine is compensated by the fact that some macro implementations
can be more efficient. In the end, in spite of these new features and the more extensive
testing of flags performance is about the same.!?

And if you wonder about memory, by compacting the used (often scattered) token memory before dumping
I manages to save some 512K on the format file, so often the loss and gain are somewhere else.

Complications

147

8.4 Introspection

In case you want to get some details about the properties of a macro, you can check its
meaning. The full variant shows all of them.

% a macro with two optional arguments with optional spacing in between:
\permanent\tolerant\protected\def\MyFoo [#1]#*[#2]{(#1) (#2)}

\meaningless\MyFoo\par
\meaning \MyFoo\par
\meaningfull\MyFoo\par

[#1]#X[#2]->(#1)(#2)
tolerant protected macro:[#1]#*[#2]->(#1)(#2)
permanent tolerant protected macro:[#1]#*[#2]->(#1)(#2)

8.4 Colofon

Author Hans Hagen

ConTgXt 2025.02.19 14:35
LuaMetaTgX 2.11.07 |20250219
Support www.pragma-ade.com

contextgarden.net
ntg-context@ntg.nl

Introspection

148

9 Characters

low level

1EX

characters

11

149

Contents

9.1 Introduction 149
9.2 History 149
9.3 The heritage 150
9.4 The LMTX approach 151
9.5 spaces 154

9.1 Introduction

This explanation is part of the low level manuals because in practice users will not have
to deal with these matters in MKIV and even less in LMTX. You can skip to the last
section for commands.

9.2 History

If we travel back in time to when TgX was written we end up in eight bit character
universe. In fact, the first versions assumed seven bits, but for comfortable use with
languages other than English that was not sufficient. Support for eight bits permits the
usage of so called code pages as supported by operating systems. Although ascii input
became kind of the standard soon afterwards, the engine can be set up for different
encodings. This is not only true for TEX, but for many of its companions, like MetaFont
and therefore MetaPost.!!

Core components of a TeX engine are hyphenation of words, applying inter-character
kerns and build ligatures. In traditional TgX engines those processes are interwoven
into the par builder but in LuaTgX these are separate stages. The original approach is
the reason that there is a relation between the input encoding and the font encoding:
the character in the input is the slot used in a reference to a glyph. When producing
the final result (e.g. pdf) there can also be a mapping to an index in a font resource.

input A [tex ->] font slot A [backend ->] glyph index A

The mapping that TgX does is normally one-to-one but an input character can undergo
some transformation. For instance a character beyond ascii 126 can be made active
and expand to some character number that then becomes the font slot. So, it is the

This remapping to an internal representation (e.g. ebcdic) is not present in LuaTgX where we assume
utf8 to be the input encoding. The MetaPost library that comes with LuaTgX still has that code but in
LuaMetaTgX it's gone. There one can set up the machinery to be utf8 aware too.

Introduction

12

13

150

expansion (or meaning) of a character that end up as numeric reference in the glyph
node. Virtual fonts can introduce yet another remapping but that's only visible in the
backend.

Actually, in LuaTgX the same happens but in practice there is no need to go active
because (at least in ConTgXt) we assume a Unicode path so there the font slot is the
Unicode got from the utf8 input.

In the eight bit universe macro packages (have to) provide all kind of means to deal
with (in the perspective of English) special characters. For instance, \"a would put
a diaeresis on top of the a or even better, refer to a character in the encoding that
the chosen font provides. Because there are some limitations of what can go in an
eight bit font, and because in different countries the used TgX fonts evolved kind of
independent, we ended up with quite some different variants of fonts. It was only with
the Latin Modern project that this became better. Interesting is that when we consider
the fact that such a font has often also hardly used symbols (like registered or copyright)
coming up with an encoding vector that covers most (latin based) European languages
(scripts) is not impossible!? Special symbols could simply go into a dedicated font, also
because these are always accessed via a macro so who cares about the input. It never
happened.

Keep in mind that when utf8 is used with eight bit engines, ConTgXt will convert se-
quences of characters into a slot in a font (depending on the font encoding used which
itself depends on the coverage needed). For this every first (possible) byte of a multi-
byte utf sequence is an active character, which is no big deal because these are outside
the ascii range. Normal ascii characters are single byte utf sequences and fall through
without treatment.

Anyway, in ConTgXt MKII we dealt with this by supporting mixed encodings, depending
on the (local) language, referencing the relevant font. It permits users to enter the text
in their preferred input encoding and also get the words properly hyphenated. But we
can leave these MKII details behind.

9.3 The heritage

In MKIV we got rid of input and font encodings, although one can still load files in a
specific code page.'3 We also kept the means to enter special characters, if only because

And indeed in the Latin Modern project we came up with one but it was already to late for it to become
popular.
I'm not sure if users ever depend on an input encoding different from utf8.

The heritage

14

151

text editors seldom support(ed) a wide range of visual editing of those. This is why we
still have

\"u \"a \v{s} \AE \ij \eacute \oslash

and many more. The ones with one character names are rather common in the TgX
community but it is definitely a weird mix of symbols. The next two are kind of outdated:
in these days you delegate that to the font handler, where turning them into ‘single’
character references depends on what the font offers, how it is set up with respect to
(for instance) ligatures, and even might depend on language or script.

The ones with the long names partly are tradition, but as we have a lot of them, in MKII
they actually serve a purpose. These verbose names are used in the so called encoding
vectors and are part of the utf expansion vectors. They are also used in labels so that
we have a good indication if what goes in there: remember that in those times editors
often didn't show characters, unless the font for display had them, or the operating
system somehow provided them from another font. These verbose names are used for
latin, greek and cyrillic and for some other scripts and symbols. They take up quite a
bit of hash space and the format file.!*

9.4 The LMTX approach

In the process of tagging all (public) macros in LMTX (which happened in 2020-2021)
I wondered if we should keep these one character macros, the references to special
characters and the verbose ones. When asked on the mailing list it became clear that
users still expect the short ones to be present, often just because old bibTgX files are
used that might need them. However, in MkIV and LMTX we load bibTgX files in a
way that turn these special character references into proper utf8 input so it makes a
weak argument. Anyway, although they could go, for now we keep them because users
expect them. However, in LMTX the implementation is somewhat different now, a bit
more efficient in terms of hash and memory, potentially a bit less efficient in runtime,
but no one will notice that.

A new command has been introduced, the very short \chr.

\chr {a} \chr {a} \chr {a}
\chr {"a} \chr {'a} \chr {"a}
\chr {a acute} \chr {a grave} \chr {a umlaut}

In MKII we have an abstract front-end with respect to encodings and also an abstract backend with respect
to supported drivers but both approaches no longer make sense today.

The LMTX approach

15

152

\chr {aacute} \chr {agrave} \chr {aumlaut}

In the first line the composed character using two characters, a base and a so called
mark. Actually, one doesn't have to use \chr in that case because ConTgXt does already
collapse characters for you. The second line looks like the shortcuts *, \' and \". The
third and fourth lines could eventually replace the more symbolic long names, if we feel
the need. Watch out: in Unicode input the marks come after.

aaa
aaa
daamla't
daamila’t

Currently the repertoire is somewhat limited but it can be easily be extended. It all
depends on user needs (doing Greek and Cyrillic for instance). The reason why we
actually save code deep down is that the helpers for this have always been there.!®

The \" commands are now just aliases to more verbose and less hackery looking macros:

\withgrave a \' a
\withacute a \' a
\withcircumflex a \" a
\withtilde a \~ a
\withmacron a \= a
\withbreve e \u e
\withdotaccent ¢ \. .c
\withdiaeresis e \" e
\withring u \r
\withhungarumlaut 4 \H 1
\withcaron é \v é
\withcedilla e \c e
\withogonek e \k e

Not all fonts have these special characters. Most natural is to have them available as
precomposed single glyphs, but it can be that they are just two shapes with the marks
anchored to the base. It can even be that the font somehow overlays them, assuming
(roughly) equal widths. The compose font feature in ConTgXt normally can handle most
well.

So if needed I can port this approach back to MKIV, but for now we keep it as is because we then have a
reference.

The LMTX approach

153

An occasional ugly rendering doesn't matter that much: better have something than
nothing. But when it's the main language (script) that needs them you'd better look for
a font that handles them. When in doubt, in ConTgXt you can enable checking:

command equivalent to

\checkmissingcharacters \enabletrackers[fonts.missing]
\removemissingcharacters \enabletrackers[fonts.missing=remove]
\replacemissingcharacters \enabletrackers[fonts.missing=replace]
\handlemissingcharacters \enabletrackers[fonts.missing={decompose, replace}]

The decompose variant will try to turn a composed character into its components so
that at least you get something. If that fails it will inject a replacement symbol that
stands out so that you can check it. The console also mentions missing glyphs. You
don't need to enable this by default'® but you might occasionally do it when you use a
font for the first time.

In LMTX this mechanism has been upgraded so that replacements follow the shape and
are actually real characters. The decomposition has not yet been ported back to MKIV.

The full list of commands can be queried when a tracing module is loaded:

\usemodule[s][characters-combinations]

\showcharactercombinations

We get this list:

acute U+00301 ° \withacute

breve U+00306 = \withbreve

caron U+0030C ° \withcaron

caron below U+0032C _ \withcaronbelow
cedilla U+00327 |, \withcedilla
circumflex U+00302 ° \withcircumflex
circumflex below U+0032D | \withcircumflexbelow
comma below U+00326 | \withcommabelow
diaeresis U+00308 ~ \withdiaeresis
dieresis U+00308 ~ \withdieresis
dot U+00307 ° \withdot

dot below U+00323 \withdotbelow
double acute U+0030B “ \withdoubleacute

16 There is some overhead involved here.

The LMTX approach

154

double grave U+0030F ~ \withdoublegrave
double vertical line U+0030E " \withdoubleverticalline
grave U+00300 ° \withgrave

hook U+00309 ° \withhook

hook below U+1FA9D \withhookbelow
hungarumlaut U+0030B “ \withhungarumlaut
inverted breve U+00311 ~ \withinvertedbreve
line U+00304 ~ \withline

line below U+00331 _ \withlinebelow
macron U+00304 -~ \withmacron
macron below U+00331 _ \withmacronbelow
middle dot U+000B7 - \withmiddledot
ogonek U+00328 . \withogonek
overline Uu+00305

ring U+0030A ° \withring

ring below U+00325 | \withringbelow
slash U+0002F / \withslash

stroke U+0002F / \withstroke

tilde U+00303 ~ \withtilde

tilde below U+00330 _ \withtildebelow
vertical line U+0030D ' \withverticalline

Some combinations are special for ConTEXt because Unicode doesn't specify decompo-
sition for all composed characters.

9.5 spaces

The engine has no real concept of a space. When the input has one it is turned into a
glue, likely with some stretch and shrink. When \nospaces is set to one, no glue will
be inserted. A value of two will inject a zero width glue. When set to three a glyph will
be inserted with the character code set by \spacechar.

\nospaces\plusthree
\spacechar\underscoreasciicode
\hccode\underscoreasciicode\underscoreasciicode
Where are the spaces?

The hccode tells the machinery that the underscore is a valid word separator (think
compound words).

Where are the spaces?

spaces

155

9.5 Colofon

Author Hans Hagen

ConTgXt 2025.02.19 14:35
LuaMetaTgX 2.11.07 ‘ 20250219
Support www.pragma-ade.com

contextgarden.net
ntg-context@ntg.nl

Colofon

156

10 Scope

low level

1EX

scope

157

Contents

10.1 Introduction 157
10.2 Registers 157
10.3 Allocation 159
10.4 Files 162

10.1 Introduction

When [visited the file where register allocations are implemented I wondered to what
extend it made sense to limit allocation to global instances only. This chapter deals
with this phenomena.

10.2 Registers

In TEX definitions can be local or global. Most assignments are local within a group. Registe

\scratchcounter = 1
here the counter has value 1
\begingroup

\scratchcounter = 2

here the counter has value 2
\endgroup
here the counter has value 1

with:

\setbox\scratchbox=\hbox{}
here the box has zero width
\begingroup
\wd\scratchbox=10pt
here the box is 10pt wide
\endgroup
here the box is 10pt wide

It all makes sense so a remark like “Assignments to box dimensions are always global” are
sort of confusing. Just look at this:

\setbox\scratchbox=\hbox to 20pt{}
here the box is \the\wd\scratchbox\ wide\par

Introduction

158

\begingroup
\setbox\scratchbox=\hbox{}
here the box is \the\wd\scratchbox\ wide\par
\begingroup
\wd\scratchbox=15pt
here the box is \the\wd\scratchbox\ wide\par
\endgroup
here the box is \the\wd\scratchbox\ wide\par
\endgroup
here the box is \the\wd\scratchbox\ wide\par

here the box is 20.0pt wide
here the box is 0.0pt wide

here the box is 15.0pt wide
here the box is 15.0pt wide
here the box is 20.0pt wide

If you don't think about it, what happens is what you expect. Now watch the next
variant:

The \global is only effective for the current box. It is good to realize that when we
talk registers, the box register behaves just like any other register but the manipu-
lations happen to the current one.

\setbox\scratchbox=\hbox to 20pt{}
here the box is \the\wd\scratchbox\ wide\par
\begingroup
\setbox\scratchbox=\hbox{}
here the box is \the\wd\scratchbox\ wide\par
\begingroup
\global\wd\scratchbox=15pt
here the box is \the\wd\scratchbox\ wide\par
\endgroup
here the box is \the\wd\scratchbox\ wide\par
\endgroup
here the box is \the\wd\scratchbox\ wide\par

here the box is 20.0pt wide
here the box is 0.0pt wide

here the box is 15.0pt wide
here the box is 15.0pt wide
here the box is 20.0pt wide

Registers

159

\scratchdimen=20pt
here the dimension is \the\scratchdimen\par
\begingroup
\scratchdimen=0pt
here the dimension is \the\scratchdimen\par
\begingroup
\global\scratchdimen=15pt
here the dimension is \the\scratchdimen\par
\endgroup
here the dimension is \the\scratchdimen\par
\endgroup
here the dimension is \the\scratchdimen\par

here the dimension is 20.0pt
here the dimension is 0.0pt

here the dimension is 15.0pt
here the dimension is 15.0pt
here the dimension is 15.0pt

10.3 Allocation

The plain TEX format has set some standards and one of them is that registers are allocatec

\newcount\mycounta
\newdimen\mydimena

These commands take a register from the pool and relate the given name to that
entry. In ConTgXt we have a bunch of predefined scratch registers for general use, like:

scratchcounter : \meaningfull\scratchcounter
scratchcounterone : \meaningfull\scratchcounterone
scratchcountertwo : \meaningfull\scratchcountertwo

scratchdimen : \meaningfull\scratchdimen
scratchdimenone : \meaningfull\scratchdimenone
scratchdimentwo : \meaningfull\scratchdimentwo

The meaning reveals what these are:

scratchcounter : global constant integer 1026
scratchcounterone : global constant integer 0
scratchcountertwo : global constant integer 0
scratchdimen : global constant dimension 15.0pt

Allocation

160

scratchdimenone : global constant dimension 0.0pt
scratchdimentwo : global constant dimension 0.0pt

You can use the numbers directly but that is a bad idea because they can clash! In_
the original TEX engine there are only 256 registers and some are used by the engine and |
TEX upped that to 64K. One could go higher but what makes sense? These registers are tal

As mentioned, commands like \newcount\foo create a global control sequence \foo ref-
erencing a counter. You can locally redefine that control sequence unless in LuaMeta-
TEX you have so called overload mode enabled. You can do local or global assignments to tl

\scratchcounter = 123
\begingroup
\scratchcounter = 456
\begingroup
\global\scratchcounter = 789
\endgroup
\endgroup

And in both cases count register 257 is set. When an assignment is global, all cur-
rent values to that register get the same value. Normally this is all quite transpar-
ent: you get what you ask for. However the drawback is that as a user you cannot
know what variables are already defined, which means that this will fail (that is: it
will issue a message):

\newcount\scratchcounter
as will the second line in:

\newcount\myscratchcounter
\newcount\myscratchcounter

In ConTgXt the scratch registers are visible but there are lots of internally used ones are pi
TEXt barking to you about not being able to define it. This is why in LMTX (and maybe sormr

\begingroup
\newlocaldimen\mydimena \mydimenallonepoint
\newlocaldimen\mydimenb \mydimenb2\onepoint
(\the\mydimena, \the\mydimenb)
\begingroup

\newlocaldimen\mydimena \mydimena3\onepoint
\newlocaldimen\mydimenb \mydimenb4\onepoint
\newlocaldimen\mydimenc \mydimenc5\onepoint

Allocation

161

(\the\mydimena,\the\mydimenb,\the\mydimenc)
\begingroup
\newlocaldimen\mydimena \mydimena6\onepoint
\newlocaldimen\mydimenb \mydimenb7\onepoint
(\the\mydimena, \the\mydimenb)
\endgroup
\newlocaldimen\mydimend \mydimend8\onepoint
(\the\mydimena,\the\mydimenb, \the\mydimenc, \the\mydimend)
\endgroup
(\the\mydimena, \the\mydimenb)
\endgroup

The allocated registers get zero values but you can of course set them to any value
that fits their nature:

(1.0pt,2.0pt)
(3.0pt,4.0pt,5.0pt)
(6.0pt,7.0pt)
(3.0pt,4.0pt,5.0pt,8.0pt)
(1.0pt,2.0pt)

You can also use the next variant where you also pass the initial value:

\begingroup
\setnewlocaldimen\mydimena 1\onepoint
\setnewlocaldimen\mydimenb 2\onepoint
(\the\mydimena, \the\mydimenb)
\begingroup

\setnewlocaldimen\mydimena 3\onepoint
\setnewlocaldimen\mydimenb 4\onepoint
\setnewlocaldimen\mydimenc 5\onepoint
(\the\mydimena, \the\mydimenb, \the\mydimenc)
\begingroup
\setnewlocaldimen\mydimena 6\onepoint
\setnewlocaldimen\mydimenb 7\onepoint
(\the\mydimena, \the\mydimenb)
\endgroup
\setnewlocaldimen\mydimend 8\onepoint
(\the\mydimena,\the\mydimenb, \the\mydimenc, \the\mydimend)
\endgroup
(\the\mydimena, \the\mydimenb)

Allocation

162

\endgroup
So, again we get:

(1.0pt,2.0pt)
(3.0pt,4.0pt,5.0pt)
(6.0pt,7.0pt)
(3.0pt,4.0pt,5.0pt,8.0pt)
(1.0pt,2.0pt)

When used in the body of the macro there is of course a little overhead involved in
the repetitive allocation but normally that can be neglected.

10.4 Files

When adding these new allocators I also wondered about the read and write alloca-
tors. We don't use them in ConIgXt but maybe users like them, so let's give an example an

\integerdef\StartHere\numexpr\inputlineno+2\relax
\starthiding
SOME LINE 1
SOME LINE 2
SOME LINE 3
SOME LINE 4
\stophiding
\integerdef\StopHere\numexpr\inputlineno-2\relax

\begingroup
\newlocalread\myreada
\immediate\openin\myreada {lowlevel-scope.tex}
\dostepwiserecurse{\StopHere}{\StartHere}{-1}{
\readline\myreada line #1 to \scratchstring #1 : \scratchstring \par
}
\blank
\dostepwiserecurse{\StartHere}{\StopHere}{1}{
\read \myreada line #1 to \scratchstring #1 : \scratchstring \par
}
\immediate\closein\myreada
\endgroup

Here, instead of hard coded line numbers we used the stored values. The optional line key
word is a LMTX speciality.

Files

163

281 : SOME LINE 4
280 : SOME_LINE 3
279 : SOME_LINE 2
278 : SOME _LINE 1

278 : SOME LINE 1 _
279 : SOME LINE 2
280 : SOME_LINE 3_
281 : SOME LINE 4 _

Actually an application can be found in a small (demonstration) module:
\usemodule[system-readers]
This provides the code for doing this:

\startmarkedlines[test]
SOME LINE 1

SOME LINE 2

SOME LINE 3
\stopmarkedlines

\begingroup
\newlocalread\myreada
\immediate\openin\myreada {\markedfilename{test}}
\dostepwiserecurse{\lastmarkedline{test}}{\firstmarkedline{test}}{-1}{

\readline\myreada line #1 to \scratchstring #1 : \scratchstring \par

}
\immediate\closein\myreada

\endgroup

As you see in these examples, we an locally define a read channel without getting
a message about it already being defined.

10.4 Colofon

Author Hans Hagen

ConTgXt 2025.02.19 14:35
LuaMetaTgX 2.11.07 ‘ 20250219
Support www.pragma-ade.com

contextgarden.net
ntg-context@ntg.nl

Colofon

164

11 Paragraphs

low level

1EX

paragraphs

165

Contents

11.1 Introduction 165
11.2 Paragraphs 165
11.3 Properties 168
11.4 Wrapping up 171
11.5 Hanging 171
11.6 Shapes 171
11.7 Modes 190
11.8 Leaders 191
11.9 Prevdepth 197
11.10 Normalization 199
11.11 Dirty tricks 199
11.12 Penalties 199
11.13 Par passes 200

11.1 Introduction

This manual is mostly discussing a few low level wrappers around low level TgX features. It
MetaFun manuals where we mess a bit with shapes. It gave a good reason to also cover so

Because paragraphs and their construction are rather central to TgX, you can imagine that
TEXt. Intercepting and tweaking paragraph properties is even more tricky, which is why we_

11.2 Paragraphs

Before we demonstrate some trickery, let's see what a paragraph is. Normally a doc-
ument source is formatted like this:

some text (line 1)
some text (line 2)

some more test (line 1)
some more test (line 2)

For this we have \enableexperiments which one can use in cont-1loc.mkxl or cont-exp.mkxl, files that
are loaded runtime when on the system. When you use them, make sure they don't interfere; they are not
part of the updates, contrary to cont-new.mkxl.

Introduction

166

There are two blocks of text here separated by an empty line and they become two
paragraphs. Unless configured otherwise an empty line is an indication that we end
a paragraph. You can also explicitly do that:

some text (line 1)

some text (line 2)

\par

some more test (line 1)
some more test (line 2)

When TgX starts a paragraph, it actually also does something think of:

[\the\everypar]some text (line 1) some text (line 2) \par
[\the\everypar]some more test (line 1) some more test (line 2) \par

or more accurate:

[\the\everypar]some text some text \par
[\the\everypar]some more test some more test \par

because the end-of-line character has become a space. As mentioned, an empty line
is actually the end of a paragraph. But in LuaMetaTgX we can cheat a bit. If we have this:_

line 1
line 2

We can do this (watch how we need to permit overloading a primitive when we have
enabled \overloadmode):

\pushoverloadmode
\def\linepar{\removeunwantedspaces !\ignorespaces}
\popoverloadmode

line 1

line 2
This comes out as:
line 1

line 2

Paragraphs

167

I admit that since it got added (as part of some cleanup halfway the overhaul of the
engine) I never saw a reason to use it, but it is a cheap feature. The \linepar prim-
itive is undefined (\undefined) by default so no user sees it anyway. Just don't use

it unless maybe for some pseudo database trickery (I considered using it for the data-
base module but it is not needed). In a similar fashion, just don't redefine \par: it's

asking for troubles and ‘not done’ in ConIgXt anyway.
Back to reality. In LuaTEX we get a node list that starts with a so called localpar node anc

When the paragraph is broken into lines hanging indentation or a so called par shape
can be applied, and we will see more of that later, here we talk \par and show an-
other LuaMetaTgX trick:

\def\foo{{\bf test:} \ignorepars}

\foo

line

The macro typesets some text and then skips to the next paragraph:
test: line

Think of this primitive as being a more powerful variant of \ignorespaces. This leaves
one aspect: how do we start a paragraph. Technically we need to force TgX into so called h
TEXt we _have more high level variants, for instance we have \noindentation.

A robust way to make sure that you get in horizontal mode is using \dontleavehmode whicl
is a wink to \leavevmode, a command that you should never use in ConITgXt, so when you c

When TgX starts with a paragraph the \everypar token list is expanded and again this is a

One of the things that TgX does in injecting the indentation. Even when there is none, it ge
TEXt we enable the LuaMetaTgX feature that does use a skip instead of a box. It's part of t!

A bit off topic is the fact that in traditional TEX empty lines or \par primitives can trigger :
TEXt MKII most macros that could be sensitive for this were defined as \long so that users
TEX these error-triggers could be disabled which of course we enable in ConTgXt and in Lus
MetaTgX these features have been removed altogether. I don't think users will complain abo

If you want to enforce a newline but not a new paragraph you can use the \crlf com-
mand. When used on its own it will produce an empty line. Don't use this to create
whitespace between lines.

Paragraphs

168

If you want to do something after so called par tokens are seen you can do this:

\def\foo{{\bf >>>> }}
\expandafterpars\foo

this is a new paragraph ...

\expandafterpars\foo
\par\par\par\par
this is a new paragraph ...

This not to be confused with \everypar which is a token list that TgX itself injects before e
>>>> this is a new paragraph ...
>>>> this is a new paragraph ...

This is typically a primitive that will only be used in macros. You can actually pro-
gram it using macros: pickup a token, check and push it back when it's not a par
equivalent token. The primitive is is just nicer (and easier on the log when tracing
is enabled).

11.3 Properties

A paragraph is just a collection of lines that result from one input line that got bro-
ken. This process of breaking into lines is influenced by quite some parameters. In_
traditional TgX and also in LuaMetaTgX by default the values that are in effect when the en

However, in LuaMetaTgX we can optionally store them with the paragraph. When that happs

variable category code

\hsize hsize 0x00000001
\leftskip skip 0x00000002
\rightskip skip 0x00000002
\hangindent hang 0x00000004
\hangafter hang 0x00000004
\parindent indent 0x00000008
\parfillleftskip parfill 0x00000010
\parfillskip parfill 0x00000010
\parinitleftskip parfill 0x00000010
\parinitrightskip parfill 0x00000010
\emergencyleftskip emergency 0x00800000

Properties

\emergencyrightskip
\adjustspacing
\protrudechars
\pretolerance
\tolerance
\emergencystretch
\looseness
\lastlinefit
\linepenalty
\interlinepenalty
\clubpenalty
\widowpenalty
\displaywidowpenalty
\lefttwindemerits
\righttwindemerits
\brokenpenalty
\adjdemerits
\doublehyphendemerits
\finalhyphendemerits
\parshape
\interlinepenalties
\clubpenalties
\widowpenalties
\displaywidowpenalties
\brokenpenalties
\orphanpenalties
\toddlerpenalties
\fitnessclasses
\adjacentdemerits
\mathleftclass
\baselineskip
\lineskip
\lineskiplimit
\adjustspacingstep
\adjustspacingshrink
\adjustspacingstretch
\hyphenationmode
\shapingpenaltiesmode
\shapingpenalty
\emergencyextrastretch

169

emergency
adjust
protrude
tolerance
tolerance
stretch
looseness
lastline
linepenalty
linepenalty
clubpenalty
widowpenalty
displaypenalty
twindemerits
twindemerits
brokenpenalty
demerits
demerits
demerits
shape
linepenalty
clubpenalty
widowpenalty
displaypenalty
brokenpenalty
orphanpenalty
toddlerpenalty
fitnessclasses
demerits
orphanpenalty
line

line

line

adjust

adjust

adjust
hyphenation
shapingpenalty
shapingpenalty
emergency

0x00800000
0x00000020
0x00000040
0x00000080
0x00000080
0x00000100
0x00000200
0x00000400
0x00000800
0x00000800
0x00001000
0x00002000
0x00004000
0x20000000
0x20000000
0x00008000
0x00010000
0x00010000
0x00010000
0x00020000
0x00000800
0x00001000
0x00002000
0x00004000
0x00008000
0x00200000
0x00400000
0x40000000
0x00010000
0x00200000
0x00040000
0x00040000
0x00040000
0x00000020
0x00000020
0x00000020
0x00080000
0x00100000
0x00100000
0x00800000

Properties

170

\parpasses parpasses 0x01000000
\linebreakchecks linebreakchecks 0x10000000
\singlelinepenalty singlelinepenalty 0x02000000
\hyphenpenalty hyphenpenalty 0x04000000
\exhyphenpenalty exhyphenpenalty 0x08000000

As you can _see here, there are more paragraph related parameters than in for instance
pdfTgX and LuaTgX and these are (to be) explained in the LuaMetaTgX manual. You can ima

This is pretty low level and there are a bunch of helpers that support this but these
are not really user level macros. As with everything TEX you can mess around as much as j
TEXt core functionality.

In LMTX taking these snapshots is turned on by default and because it thereby fun-
damentally influences the par builder, users can run into compatibility issues but in
practice there has been no complaints (and this feature has been in use quite a while
before this document was written). One reason for users not noticing is that one of
the big benefits is probably handled by tricks mentioned on the mailing list. Imag-

ine that you have this:

{\bf watch out:} here is some text

In this small example the result will be as expected. But what if something magic
with the start of a paragraph is done? Like this:

\placefigure[left]{A cow!}{\externalfigure[cow.pdf]}

{\bf watch out:} here is some text ... of course much more is needed to
get a flow around the figure!

The figure will hang at the left side of the paragraph but it is put there when the
text starts and that happens inside the bold group. It means that the properties we
set in order to get the shape around the figure are lost as soon as we're at ‘here is
some text’ and definitely is wrong when the paragraph ends and the par builder has
to use them to get the shape right. We get text overlapping the figure. A trick to
overcome this is:

\dontleavehmode {\bf watch out:} here is some text ... of course much
more is needed to get a flow around the figure!

where the first macro makes sure we already start a paragraph before the group
is_ entered (using a \strut also works). It's not nice and I bet users have been bit-
ten by this and by now know the tricks. But, with snapshots such fuzzy hacks are
not needed any more! The same is true with this:

Properties

171

{\leftskip lem some text \par}

where we had to explicitly end the paragraph inside the group in order to retain the

skip. I suppose that users normally use the high level environments so they never

had to worry about this. It's also why users probably won't notice that this new mech-
anism has been active for a while. Actually, when you now change a parameter in-

side the paragraph its new value will not be applied (unless you prefix it with \frozen or_
snapshot it) but no one did that anyway.

11.4 Wrapping up
In ConTgXt LMTX we have a mechanism to exercise macros (or content) before a paragraph

Although the high level interface has been around for a while it still needs a bit more
testing (read: use cases are needed). In the few cases where we already use it ap-
plication can be different because again it relates to snapshots. This because in the
past we had to use tricks that also influenced the user interface of some macros (which
made them less natural as one would expect). So the question is: where do we ap-

ply it in old mechanisms and where not.

todo: accumulation, interference, where applied, limitations

11.5 Hanging

There are two mechanisms for getting a specific paragraph shape: rectangular hang-

ing and arbitrary shapes. Both mechanisms work top-down. The first mechanism uses
a_combination of \hangafter and \hangindent, and the second one depends on \parshape.
this section we discuss the rectangular one.

\hangafter 4 \hangindent 4cm \samplefile{tufte} \page
\hangafter -4 \hangindent 4cm \samplefile{tufte} \page
\hangafter 4 \hangindent -4cm \samplefile{tufte} \page
\hangafter -4 \hangindent -4cm \samplefile{tufte} \page

As you can see in figure 11.1, the four cases are driven by the sign of the values. If you w.

11.6 Shapes

In ConTEXt we don't use \parshape a lot. It is used in for instance side floats but even ther
MetaFun, and the manual also needed an update, one of the examples in that manual that :

Wrapping up

172

We thrive in information-thick worlds because of our marvelous and everyday

capacity to select, edit, single out, structure, highlight, group, pair, merge, har-

monize, synthesize, focus, organize, condense, reduce, boil down, choose, catego-

rize, catalog, classify, list, abstract, sean, look into, idealize, isolate, discriminate.
distinguish, sereen, pigeonhole, pick over, sort, integrate,
blend, inspect, filter, lump, skip, smooth, chunk, average
approximate, cluster, aggregate, outline, summarize, item-
ize, review, dip into, flip through, browse, glance into, leaf
through, skim, refine, enumerate, glean, synopsize, winnow
the wheat from the chaff and separate the sheep from the
goats,

We thrive in information-thick worlds because of our mar-
velous and everyday

pacity to select, edit, single out, struc-
ture, highlight, group, pair, merge, harmonize, synthesize,

ocus, organize, condense, reduc

gorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, discrim-
inate, distinguish, screen, pigeonhole, pick over, sort, integra
filter, Tump,

boil down, choose, cate-

blend, inspect
skip, smooth, chunk, average, approximate, cluster, aggregate, out-
line, summarize, itemize, review, dip into, flip through, browse, glance into, leaf
through, skim, refine, enumerate, glean, synopsize, winnow the wheat from the
chaff and separate the sheep from the goats

\hangafter +4
\hangindent +4cm

\hangafter -4
\hangindent +4cm

We thrive in information-thick worlds because of our marvelous and everyday
capacity to select, edit, single out, structure, highlight, group, pair, merge, har-
monize, synthesize, focus, organiz

e, s

. condense, reduce, boil down, choose, catego-
rize, catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate,
distinguish, sereen, pigeonhole, pick over, sort, integrate,

blend, inspect, filter, lump, skip, smooth, chunk, average.

approximate, cluster, aggregate, outline, summarize, item-

ize, review, dip into, flip through, browse, glance into, leaf

through, skim, refine, enumerate, glean, synopsize, winnow

the wheat from the chaff and separate the sheep from the

goats

We thrive in information-thick worlds because of our mar-
velous and everyday capacity to select, edit, single out, struc-
ture, highlight, group, pair, merge, harmonize, synthesiz
focus, organize, condense, reduce, hoil down, choose, cate-

gorize, catalog, classify, list, abstract, sean, look into, idealize, isolate, discrim-
inate, distinguish, screen, pigeonhole, pick over

sort, integrate, blend, inspect
filter, lump, skip, smooth, chunk, average, approximate, cluster, aggregate, out-
line, summarize, itemize, review, dip into, flip through, browse, glance into, leaf
through, skim, refine, enumerate, glean, synopsize, winnow the wheat from the
chaff and separate the sheep from the goats.

\hangafter +4
\hangindent -4cm

\hangafter -4
\hangindent -4cm

Figure 11.1 Hanging indentation

Shapes

18

173

One important property of the \parshape mechanism is that it works per paragraph. You
define a shape in terms of a left margin and width of a line. The shape has a fixed
number of such pairs and when there is more content, the last one is used for the

rest of the lines. When the paragraph is finished, the shape is forgotten. 8

The high level interface is a follow up on the example in the MetaFun manual and
uses _shapes that carry over to the next paragraph. In addition we can cycle over
a shape. In this interface shapes are defined using keyword. Here are some exam-

ples:

\startparagraphshape[test]
left 1mm right 1mm
left 5mm right 5mm

\stopparagraphshape

This shape has only two entries so the first line will have a 1mm margin while later
lines will get Smm margins. This translates into a \parshape like:

\parshape 2
1mm \dimexpr\hsize-1mm\relax
5mm \dimexpr\hsize-5mm\relax

Watch the number 2: it tells how many specification lines follow. As you see, we need
to calculate the width.

\startparagraphshape[test]
left 1mm right 1mm
left 5mm right 5mm
repeat

\stopparagraphshape

This variant will alternate between 1mm and Smm margins. The repeating feature
is translated as follows. Maybe at some point I will introduce a few more options.

\parshape 2 options 1
1mm \dimexpr\hsize-1lmm\relax
5mm \dimexpr\hsize-5mm\relax

A shape can have some repetition, and we can save keystrokes by copying the last
entry. The resulting \parshape becomes rather long.

Not discussed here is a variant that might end up in LuaMetaTgX that works with the progression, i.e. takes
the height of the content so far into account. This is somewhat tricky because for that to work vertical skips
need to be frozen, which is no real big deal but has to be done careful in the code.

Shapes

174

\startparagraphshape[test]
left 1mm right 1mm
left 2mm right 2mm
left 3mm right 3mm
copy 8
left 4mm right 4mm
left 5mm right 5mm
left 5mm hsize 10cm

\stopparagraphshape

Also watch the hsize keyword: we don't calculate the hsize from the left and right val-
ues but explicitly set it.

\startparagraphshape[test]
left 1mm right 1mm
right 3mm
left 5mm right 5mm
repeat

\stopparagraphshape

When a right keywords comes first the left is assumed to be zero. In the examples
that follow we will use a couple of definitions:

\startparagraphshape[test]
both 1mm both 2mm both 3mm both 4mm both 5mm both 6mm
both 7mm both 6mm both 5mm both 4mm both 3mm both 2mm
\stopparagraphshape

\startparagraphshape[test-repeat]
both 1mm both 2mm both 3mm both 4mm both 5mm both 6mm
both 7mm both 6mm both 5mm both 4mm both 3mm both 2mm
repeat

\stopparagraphshape

The last one could also be defines as:

\startparagraphshape[test-repeat]
\rawparagraphshape{test} repeat
\stopparagraphshape

In the previous code we already introduced the repeat option. This will make the
shape repeat at the engine level when the shape runs out of specified lines. In the
application of a shape definition we can specify a method to be used and that deter-

Shapes

175

mine if the next paragraph will start where we left off and discard afterwards (shift) or
that we move the discarded lines up front so that we never run out of lines (cycle). It
sounds complicated but just keep in mind that repeat is part of the \parshape and

act within a paragraph while shift and cycle are applied when a new paragraph

is started.

In figure 11.2 you see the following applied:

\startshapedparagraph[list=test]
\dorecurse{8}{\showparagraphshape\samplefile{tufte} \par}
\stopshapedparagraph

\startshapedparagraph[list=test-repeat]
\dorecurse{8}{\showparagraphshape\samplefile{tufte} \par}
\stopshapedparagraph

In figure 11.3 we use this instead:

\startshapedparagraph[list=test,method=shift]
\dorecurse{8}{\showparagraphshape\samplefile{tufte} \par}
\stopshapedparagraph

Finally, in figure 11.4 we use:

\startshapedparagraph[list=test,method=cycle]
\dorecurse{8}{\showparagraphshape\samplefile{tufte} \par}
\stopshapedparagraph

These examples are probably too small to see the details but you can run them your-
self or zoom in on the details. In the margin we show the values used. Here is a
simple example of (non) poetry. There are other environments that can be used in-
stead but this makes a good example anyway.

\startparagraphshape[test]
left Oem right Oem
left lem right Oem
repeat

\stopparagraphshape

\startshapedparagraph[list=test,method=cycle]
verse line 1.1\crlf verse line 2.1\crlf
verse line 3.1\crlf verse line 4.1\par
verse line 1.2\crlf verse line 2.2\crlf

Shapes

176

We thrive i information-thick worlds because of our marvelous and everyday
ity to sele ngle out, structure, highlight, group, pair, merge,
harmonize, synthesize, focus, organize, condense, reduce, boil down, choose,
categorize, catalog, classify, lis
criminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, ag-
gregate, outline, summarize, itemize, review, dip into, lip through, brows
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow
the wheat from the chaff and separate the sheep from the goats
We thrive in information-thick worlds because of our marvelous and everyday ca-
pacity to se it, single out, structure, highlight, group, pair, merge, harmo-
organize, condense, reduce, boil down, choose, categorize,
. scan, look into, idealize, isolate, discriminate, dis-
tinguish, sereen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, . aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re-
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.
We thrive in information-thick worlds because of our marvelous and everyday ca-
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo-
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis-
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspeet, filter, lump,
kip. smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re-
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.
We thrive in information-thick worlds because of our marvelous and everyday ca-
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo-
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate,
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspeet. filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re-
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.
We thrive in information-thick worlds because of our marvelous and everyday ca-
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo-
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis-
tinguish, sereen, pigeonhole, pick over, sort, integrate, blend, inspeet, filter, lump,

edit,

o

skip, smooth, chunk, average, approsimate, cluster, aggregate, outline, summarize,
itemize, review, dip into, lip through, browse, glance into, leaf through, skim, re-
fine, enumerate, glean, synopsize, winnow the Wheat from the chaf and separate
the sheep from the goats.
We thrive in information-thick worlds because of our marvelous and everyday ca-
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo-
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis-
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approsimate, cluster, aggregate, outline, summarize,
itemize, review, dip into, lip through, browse, glance into, leaf through, skim, re-
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
sheep from the goat
We thrive in information-thick worlds because of our marvelous and cveryday ca-
i ngle out, structure, highlight, group, pair, merge, harmo-
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis-
tinguish, screen, pigeonhole, pick over, sort, integrate, blend. inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re-
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goat
We thrive in information-thick worlds because of our marvelous and everyday ca-
single out, structure, highlight, group, pair, merge, harmo-
organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis-
tinguish, sreen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approsimate, cluster, aggregate, outline, summariz
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re-
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and scparate
the sheep from the goat

t

discard, finite shape, page 1

discard, finite shape, page 2

We thrive in information-thick worlds because of our marvelous and everyday ca-
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo-
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis-
tinguish, sereen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re-
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.
We thrive in information-thick worlds because of our marvelous and everyday ca-
pacity to sel
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis-
tinguish, sereen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, ump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re-
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and scparate
the sheep from the goats.
We thrive in information-thick worlds because of our marvelous and everyday ca-
it single out, structure, highlight, group, pair, merge, harmo-
organize, condense, reduce, boil down, choose, categorize,
ify, list, abstract, scan, look into, idealize, isolate, discriminate, dis-
tinguish, sereen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, . aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re-
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.
We thrive in information-thick worlds because of our marvelous and everyday ca-
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo-
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate,
tinguish, screen, pigeonhole, pick over, sott, integrate, blend, inspect, filter, lumnp,
kip, smaoth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re-
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.
We thrive in information-thick worlds because of our marvelous and everyday ca-
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo-
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate,
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,

a

o

skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re-
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.
We thrive in information-thick worlds because of our marvelous and everyday ca-
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo-
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categori
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis-
tinguish, sereen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re-
fine, enumerate, glean, synopsize, winnow the Wheat from the chiaf and separate
the sheep from the goats.
We thrive in information-thick worlds because of our marvelous and everyday ca-
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo-
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis-
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re-
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
sheep from the goat
We thrive in information-thick worlds because of our marvelous and everyday ca-
i ngle out, structure, highlight, group, pair, merge, harmo-
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis-
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re-
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
he sheep from the goat

t

discard, repeat in shape, page 1

discard, repeat in shape, page 2

Figure 11.2 Discarded shaping

Shapes

177

We thrive i information-thick worlds because of our marvelous and everyday
ity to sele ngle out, structure, highlight, group, pair, merge,
harmonize, synthesize, focus, organize, condense, reduce, boil down, choose,
categorize, catalog, classify, lis
criminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, ag-
gregate, outline, summarize, itemize, review, dip into, lip through, brows
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow
the wheat from the chaff and separate the sheep from the goats
We thrive in information-thick worlds because of our marvelous and everyday ca-
ol it, single out, structure, highlight, group, pair, merge, harmo-
organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis-
tinguish, sereen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, . aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re-
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.
We thrive in information-thick worlds because of our marvelous and everyday ca-
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo-
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis-
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspeet, filter, lump,
kip. smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re-
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.
We thrive in information-thick worlds because of our marvelous and everyday ca-
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo-
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate,
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspeet. filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re-
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.
We thrive in information-thick worlds because of our marvelous and everyday ca-
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo-
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis-
tinguish, sereen, pigeonhole, pick over, sort, integrate, blend, inspeet, filter, lump,

edit,

o

skip, smooth, chunk, average, approsimate, cluster, aggregate, outline, summarize,
itemize, review, dip into, lip through, browse, glance into, leaf through, skim, re-
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and scparate
the sheep from the goats.
We thrive in information-thick worlds because of our marvelous and everyday ca-
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo-
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis-
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approsimate, cluster, aggregate, outline, summarize,
itemize, review, dip into, lip through, browse, glance into, leaf through, skim, re-
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
sheep from the goat
We thrive in information-thick worlds because of our marvelous and everyday ca-
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo-
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis-
tinguish, screen, pigeonhole, pick over, sort, integrate, blend. inspect, filter, lump,
skip, smooth, chunk, average, approsimate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re-
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goat
We thrive in information-thick worlds because of our marvelous and everyday ca-
I single out, structure, highlight, group, pair, merge, harmo-
organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis-
tinguish, sreen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approsimate, cluster, aggregate, outline, summariz
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re-
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and scparate
the sheep from the goat

t

shift, finite shape, page 1

shift, finite shape, page 2

We thrive in information-thick worlds because of our marvelous and everyday
capacity to ngle out, structure, highlight, group, pair, merge,
harmonize, synthesize, focus, organize, condense, reduce, boil down, choose,
categorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, dis-
criminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, flter, lump, skip, smooth, chunk, average, approximate, cluster, ag-
gregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow
the wheat from the chaff and separate the sheep from the goats
We thrive in information-thick worlds because of our marvelous and everyday ca-
pacity to sel single out, structure, highlight, group, pair, merge, harmo-
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis-
tinguish, sereen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re-
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.
We thrive in information-thick worlds because of our marvelous and everyday ca-
ol it, single out, structure, highlight, group, pair, merge, harmo-
organize, condense, reduce, boil down, choose, categorize,
assify, list, abstract, scan, look into, idealize, isolate, discriminate, dis-
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, . aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re-
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.
We thrive in information-thick worlds because of our marvelous and everyday ca-
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo-
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate,
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
kip, smaoth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re-
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.
We thrive in information-thick worlds because of our marvelous and everyday ca-
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo-
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis-
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,

a

skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re-
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.
We thrive in information-thick worlds because of our marvelous and everyday ca-
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo-
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categori
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis-
tinguish, sereen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re-
fine, enumerate, glean, synopsize, winnow the Wheat from the chiaf and separate
the sheep from the goats.
We thrive in information-thick worlds because of our marvelous and everyday ca-
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo-
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis-
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re-
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
sheep from the goat
We thrive in information-thick worlds because of our marvelous and everyday ca-
i ngle out, structure, highlight, group, pair, merge, harmo-
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis-
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re-
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
he sheep from the goat

t

shift, repeat in shape, page 1

shift, repeat in shape, page 2

Figure 11.3 Shifted shaping

Shapes

178

We thrive in mfonnauon»tlndt worlds because of our marvelous and everyday
ity to sele ngle out, structure, highlight, group. pair, merge,
harmonize, synthesize, focus, organize, condense, reduce, boil down, choose,
categorize, catalog, classify, lis
criminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, ag-
gregate, outline, summarize, itemize, review, dip into, flip through, brows
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow
the wheat from the chaff and separate the sheep from the goats.
We thrive in information-thick worlds because of our marvelous and every-
day capacity to select, edit, single out, structure, highlight, group, pair,
merge, harmonize, synthesize, focus, organize, condense, reduce, boil down,
choose, categorize, catalog, classify, list, abstract, scan, look into, idealize,
isolate, discriminate, distinguish, screen, pigeonhole, pick over, sort, mcgratc,
blend, inspect, filter, lump, skip, smooth, chunk, average, approximat
aggregate, outline, summarize, itemize, review, dip into, flip through, bmw.
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the
wheat from the chaff and separate the sheep from the goats.
We thrive in information-thick worlds because of our marvelous and everyday
capacity to select, edit, single out, structure, highlight, group, pair, merge,
harmonize, synthesize, focus, organize, condense, reduce, boil down, choose,
categorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, dis-
criminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, mooth, chunk, average, approximate, cluster, ag-
gregate, outline, summarize, itemize, review, dip into, flip through, broy
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow
the wheat from the chaff and separate the sheep from the goats.
We thrive in information-thick worlds because of our marvelous and ev
day capacity to select, edit, single out, structure, highlight, group, pair,
merge, harmonize, synthesize, focus, organize, condense, reduce, boil down,
choose, categorize, catalo classify, list, abstract, scan, look into, idealize,
isolate, ish, screen, pigeonh pick over, sort, integrate,
blend, inspect. filter, lump. kip, smooth, chunk, average, approximate, cluster,
aggregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the
wheat from the chaff and separate the sheep from the goats.

edit,

We dhrive in information-thick worlds because of our marvelous and everyday
structure, highlight. group, pair, merge.

s, abstract, scan, look into, idealize, isolate, dis-
dsh, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, ag-
gregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow
the wheat from the chaff and separate the sheep from the goats.
We thrive in information-thick worlds because of our marvelous and every-
day capacity to select, edit, single out, structure, highlight, group, pair,
merge, harmonize, synthesize, focus, organize, condense, reduce, boil down,
choose, categorize, catalo, classify, list, abstract, scan, look into, idealize,
isolate, di i inguish, screen, pigeonhole, pick over, sort, integrate,
blend, inspect, filter, lump skip, smooth, approximate, cluster,
aggregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the
wheat from the chaff and separate the sheep from the goats
We thrive in information-thick worlds because of our marvelous and everyday
capacity to select, edit, single out, structure, highlight, group, pair, merge,
harmonize, synthesize, focus, organize, condense, reduce, boil down, choose,
categorize, catalog, classify, list, abstract, scan, look into, idealize, isolate,
criminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, flter, lnmp, skip, smooth, chunk, average, approximate, clus
gregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow
the wheat from the chaff and separate the sheep from the goats.
We thrive in information-thick worlds because of our marvelous and every-
day capacity to select, edit, single out, structure, highlight, group, pair,
merge, harmonize, synthesize, focus, organize, condense, reduce, boil down,
clioose, categorize, catalog, classify, s, abstract, scan. look nto, iealize.
isolate, pick over, sort, integrate,
blend, inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster,
aggregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the
wheat from the chaff and separate the sheep from the goats.

or, ag:

creen, pig

cycle, finite shape, page

cycle, finite shape, page 2

We thrive in information-thick worlds because of our marvelous and everyday
capacity to ngle out, structure, highlight, group, pair, merge,
harmonize, synthesize, focus, organize, condense, reduce, boil down, choose,
categorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, dis-
criminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, flter, lump, skip, smooth, chunk, average, approximate, cluster, ag-
gregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow
the wheat from the chaff and separate the sheep from the goats
We thrive i information-thick worlds because of our marvelous and ever
day sclect, edit, single out, structure, highlight, group, pair,
merge, harmonize, synthesize, focus, organize, condense, lown,
choose, alog, classify, list, abstract, scan, look into, idealize,
isolate, discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate,
blend, inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster,
aggregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the
wheat from the chaff and separate the sheep from the goats.
We thrive in information-thick worlds because of our marvelous and everyday
capacity to sclect, edit, single out, structure, highlight, group, pair, merge,
harmonize, synthesize, focus, organize, condense, reduce, boil down, choose,
categorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, dis-
criminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
pect, filter, lump, skip, smooth, chunk, average, approximate, cluster, ag-
grcgatc outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow
the wheat from the chaff and separate the sheep from the goats.

We thrive in information-thick worlds because of our marvelous and every

day capacity to select, edit, single out, structure, highlight, group. pair,
merge, harmonize, synthesize, focus, organize, condense, reduce, boil down,
choose, categorize, catalog, cla n, look into, ideal
isolate, di distinguish, screen, pigeonhole, pick over, sort, integrate,
blend, inspect, filter, lump, skip, smooth, chunk, average, approximate, cl
aggregate, outline, sunmarize, itemize, review, dip into, flip through, brow
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the
wheat from the chaff and separate the sheep from the goats

We thrive in information-thick worlds becanse of our marvelous and everyday
to select, edit, single out, structure, highlight, group, pair, merge,
harmonize, synthesize, focus, organize, condense, reduce, boil down, choos
categorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, dis-
criminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, ag-
gregate, outline, summarize, itemize, review, dip into, fiip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow
the wheat from the chaff and separate the sheep from the goats.
We thrive in information-thick worlds because of our marvelous and every-
pacity to select, edit, single out, structure, highlight, group, pair,
merge, harmonize, synthesize, focus, organize, condense, reduce, boil down,
choose, categorize, catalog, classify, list, abstract, scan, look into, idealize,
isolate, discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate,
blend, inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster,
aggregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the
wheat from the chaff and separate the sheep from the goats.
We thrive in information-thick worlds becanse of our marvelous and everyday
capacity to sclect, edit, single out, structure, highlight, group, pair, merge,
harmonize, synthesize, focus, organize, condense, reduce, boil down, choose,
categorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, dis
criminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, ag-
gregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow
the wheat from the chaff and separate the sheep from the goats.
We thrive in information-thick worlds becanse of our marvelous and every-
day capacity to select, edit, single out, structure, highlight, group, pair,
merge, harmonize, synthesize, focus, organize, condense, reduce, boil down,
choose, categorize, catalog, classify, list, abstract, sean, look into, idealize,
isolate, di sh, screen, pigeonhole, pick over, sort, integrate,
blend, inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster,
aggregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the
wheat from the chaff and separate the sheep from the goats

cycle, repeat in shape, page 1

cycle,

Figure 11.4 Cycled shaping

Shapes

repeat in shape, page 2

179

verse line 3.2\crlf verse line 4.2\crlf
verse line 5.2\crlf verse line 6.2\par
\stopshapedparagraph

verse line 1.1
verse line 2.1

verse line 3.1
verse line 4.1

verse line 1.2
verse line 2.2

verse line 3.2
verse line 4.2

verse line 5.2
verse line 6.2

Because the idea for this feature originates in MetaFun, we will now kick in some
MetaPost. The following code creates a shape for a circle. We use a 2mm offset here:

\startuseMPgraphic{circle}
path p ; p := fullcircle scaled TextWidth ;
build parshape(p,
2mm, 0, 0O,
LineHeight, StrutHeight, StrutDepth, StrutHeight
)
\stopuseMPgraphic

We plug this into the already described macros:

\startshapedparagraph[mp=circle]%
\setupalign[verytolerant,stretch,last]%
\samplefile{tufte}

\samplefile{tufte}

\stopshapedparagraph

And get ourself a circular shape. Watch out, at this moment the shape environment
does not add grouping so when as in this case you change the alignment it can in-
fluence the document.

We thrive in information-
thick worlds because of our marvelous
and everyday capacity to select, edit, single
out, structure, highlight, group, pair, merge, harmo-

Shapes

180

nize, synthesize, focus, organize, condense, reduce, boil
down, choose, categorize, catalog, classify, list, abstract, scan, look
into, idealize, isolate, discriminate, distinguish, screen, pigeonhole, pick
over, sort, integrate, blend, inspect, filter, lump, skip, smooth, chunk, av-
erage, approximate, cluster, aggregate, outline, summarize, itemize, re-
view, dip into, flip through, browse, glance into, leaf through, skim, re-
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and sep-
arate the sheep from the goats. We thrive in information-thick worlds be-
cause of our marvelous and everyday capacity to select, edit, single out, struc-
ture, highlight, group, pair, merge, harmonize, synthesize, focus, organize, con-
dense, reduce, boil down, choose, categorize, catalog, classify, list, abstract, scan, look
into, idealize, isolate, discriminate, distinguish, screen, pigeonhole, pick over, sort, in-
tegrate, blend, inspect, filter, lump, skip, smooth, chunk, average, approximate, clus-
ter, aggregate, outline, summarize, itemize, review, dip into, flip through, browse, glance
into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the
wheat from the chaff and separate the sheep from the goats.

Assuming that the shape definition above is in a buffer we can do this:

\startshapedparagraph[mp=circle]%
\setupalign[verytolerant,stretch,last]%
\samplefile{tufte}

\samplefile{tufte}

\stopshapedparagraph

The result is shown in figure 11.5. Because all action happens in the framed environment,

\startuseMPgraphic{circle}
path p ; p := fullcircle scaled \the\dimexpr\framedwidth+\framedoffset
*2\relax ;
build parshape(p,
\framedoffset, 0, 0,
LineHeight, StrutHeight, StrutDepth, StrutHeight
)
draw p ;
\stopuseMPgraphic

A mechanism like this is often never completely automatic in the sense that you need
to keep an eye on the results. Depending on user demands more features can be
added. With weird shapes you might want to set up the alignment to be tolerant and
have some stretch._

Shapes

181

We thrive in information-thick
worlds because of our marvelous and every-
day capacity to select, edit, single out, structure,
highlight, group, pair, merge, harmonize, synthesize, focus,
organize, condense, reduce, boil down, choose, categorize, cat-
alog, classify, list, abstract, scan, look into, idealize, isolate, discrimi-
nate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend, in-
spect, filter, lump, skip, smooth, chunk, average, approximate, cluster, aggre-
gate, outline, summarize, itemize, review, dip into, flip through, browse, glance

into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the wheat
from the chaff and separate the sheep from the goats. We thrive in information-
thick worlds because of our marvelous and everyday capacity to select, edit, single
out, structure, highlight, group, pair, merge, harmonize, synthesize, focus, organize,
condense, reduce, boil down, choose, categorize, catalog, classify, list, abstract, scan,
look into, idealize, isolate, discriminate, distinguish, screen, pigeonhole, pick over, sort,
integrate, blend, inspect, filter, lump, skip, smooth, chunk, average, approximate, clus
ter, aggregate, outline, summarize, itemize, review, dip into, flip through, browse
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the

wheat from the chaff and separate the sheep from the goats.

Figure 11.5 A framed circular shape

The interface described in the MetaFun manual is pretty old, the time stamp of the
original code is mid 2000, but the principles didn't change. The examples in meta-imp-txt.
now be written as:

\startshapetext[test 1,test 2,test 3,test 4]
\setupalign[verytolerant,stretch,normal]%
\samplefile{douglas} % Douglas R. Hofstadter
\stopshapetext
\startcombination[2*2]
{\framed[offset=overlay, frame=off,background=test 1]{\getshapetext}}
{test 1}
{\framed[offset=overlay, frame=off,background=test 2]{\getshapetext}}
{test 2}
{\framed[offset=overlay, frame=off,background=test 3]{\getshapetext}}
{test 3}
{\framed[offset=overlay, frame=off,background=test 4]{\getshapetext}}
{test 4}
\stopcombination

Shapes

182

In figure 11.6 we see the result. Watch how for two shapes we have enabled tracing. Of co

Donald Knuth has

years working on a sys
tem allowing him to contro
many aspects of the design o
his forthcoming books—fro
the typesetting and lay-
out down to the very
shapes of the

test 1 test 2

DL O a8 Meta-ronr ==

come well-known and is

available in many coun;
tries around the world
By contrast, his Meta
Font system for design
ing families of type
faces has not becom
as well known or a
available.

In his article “The Con-

Nnutn _sets _fortn 1ol
[1€ ___11T'ST __CIINe ThHe

1INAEeriving DpPNniioS

PNV O Ivietaront, |

1S Well aS_Somne o1 |
A
LS. _Proauctes.. . INOLU .\

) IIIV-E-III:-HIIIIHLIIIA

pXCIUINGg and _clearlV

test 3

Figure 11.6

Here is a bit more extreme example. Again we use a circle:

\startuseMPgraphic{circle}
lmt_parshape [

path =
offset = 2mm,
bottomskip = - 1.5LineHeight,
1
\stopuseMPgraphic

fullcircle scaled 136mm,

Shapes

183

But we output a longer text:

\startshapedparagraph[mp=circle, repeat=yes,method=cycle]%
\setupalign[verytolerant,stretch, last]\dontcomplain
{\darkred \samplefile{tufte}}\par
{\darkgreen \samplefile{tufte}}\par
{\darkblue \samplefile{tufte}}\par
{\darkcyan \samplefile{tufte}}\par
{\darkmagenta \samplefile{tufte}}\par

\stopshapedparagraph

We get a multi-page shape:

We thrive in information-
thick worlds because of our marvelous
and everyday capacity to select, edit, single
out, structure, highlight, group, pair, merge, harmo-
nize, synthesize, focus, organize, condense, reduce, boil
down, choose, categorize, catalog, classify, list, abstract, scan, look
into, idealize, isolate, discriminate, distinguish, screen, pigeonhole, pick
over, sort, integrate, blend, inspect, filter, lump, skip, smooth, chunk, av-
erage, approximate, cluster, aggregate, outline, summarize, itemize, re-
view, dip into, flip through, browse, glance into, leaf through, skim, re-
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and sepa-
rate the sheep from the goats.

We thrive in information-thick worlds because of our marvelous and everyday
capacity to select, edit, single out, structure, highlight, group, pair, merge, har-
monize, synthesize, focus, organize, condense, reduce, boil down, choose, cat-
egorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, dis-

criminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend, in-

spect, filter, lump, skip, smooth, chunk, average, approximate, cluster, ag-
gregate, outline, summarize, itemize, review, dip into, flip through, browse, glance
into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the
wheat from the chaff and separate the sheep from the goats.

We thrive in information-thick worlds because of our marvelous
and everyday capacity to select, edit, single out, structure, high-
light, group, pair, merge, harmonize, synthesize, focus, or-
ganize, condense, reduce, boil down, choose, catego-
rize, catalog, classify, list, abstract, scan, look
into, idealize, isolate, discriminate, distin-

Shapes

184

guish, screen, pigeonhole, pick
over, sort, in-
tegrate, blend, inspect, fil-
ter, lump, skip, smooth, chunk, av-
erage, approximate, cluster, aggregate, out-
line, summarize, itemize, review, dip into, flip through, browse, glance
into, leaf through, skim, refine, enumerate, glean, synop-
size, winnow the wheat from the chaff and separate the sheep

from the goats.

We thrive in information-thick worlds because of our marvelous and
everyday capacity to select, edit, single out, structure, highlight, group, pair, merge, har
monize, synthesize, focus, organize, condense, reduce, boil down, choose, cat-
egorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, dis-
criminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend, in-
spect, filter, lump, skip, smooth, chunk, average, approximate, cluster, aggre-
gate, outline, summarize, itemize, review, dip into, flip through, browse, glance
into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the wheat
from the chaff and separate the sheep from the goats.

We thrive in information-thick worlds because of our marvelous and everyday
capacity to select, edit, single out, structure, highlight, group, pair, merge, har-
monize, synthesize, focus, organize, condense, reduce, boil down, choose, cat-
egorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, dis-
criminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend, in-
spect, filter, lump, skip, smooth, chunk, average, approximate, clus-
ter, aggregate, outline, summarize, itemize, review, dip into, flip
through, browse, glance into, leaf through, skim, refine, enu-
merate, glean, synopsize, winnow the wheat from the
chaff and separate the sheep from the goats.

Compare this with:

\startshapedparagraph[mp=circle, repeat=yes,method=cycle]%
\setupalign[verytolerant,stretch, last]\dontcomplain
{\darkred \samplefile{tufte}}

{\darkgreen \samplefile{tufte}}
{\darkblue \samplefile{tufte}}
{\darkcyan \samplefile{tufte}}
{\darkmagenta \samplefile{tufte}}
\stopshapedparagraph

Shapes

185

Which gives:

We thrive in information-
thick worlds because of our marvelous
and everyday capacity to select, edit, single
out, structure, highlight, group, pair, merge, harmo-
nize, synthesize, focus, organize, condense, reduce, boil
down, choose, categorize, catalog, classify, list, abstract, scan, look
into, idealize, isolate, discriminate, distinguish, screen, pigeonhole, pick
over, sort, integrate, blend, inspect, filter, lump, skip, smooth, chunk, av-
erage, approximate, cluster, aggregate, outline, summarize, itemize, re-
view, dip into, flip through, browse, glance into, leaf through, skim, re-
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and sep-
arate the sheep from the goats. We thrive in information-thick worlds be-
cause of our marvelous and everyday capacity to select, edit, single out, struc-
ture, highlight, group, pair, merge, harmonize, synthesize, focus, organize, con-
dense, reduce, boil down, choose, categorize, catalog, classify, list, abstract, scan, look
into, idealize, isolate, discriminate, distinguish, screen, pigeonhole, pick over, sort, in-
tegrate, blend, inspect, filter, lump, skip, smooth, chunk, average, approximate, clus-
ter, aggregate, outline, summarize, itemize, review, dip into, flip through, browse, glance
into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the
wheat from the chaff and separate the sheep from the goats. We thrive
in_information-thick worlds because of our marvelous and everyday
capacity to select, edit, single out, structure, highlight, group, pair, merge, har-
monize, synthesize, focus, organize, condense, reduce, boil down, choose, cat-
egorize, catalog, classify, list, abstract, scan, look into, ide-
alize, isolate, discriminate, distinguish, screen, pigeon-
hole, pick over, sort, integrate, blend, inspect, fil-
ter, lump, skip, smooth, chunk, average, ap-
proximate, cluster, aggregate, out-
line, summa-
rize, itemize, review, dip
into, flip through, browse, glance into, leaf
through, skim, refine, enumerate, glean, synop-
size, winnow the wheat from the chaff and separate
the sheep from the goats. We thrive in information-thick
worlds because of our marvelous and everyday capacity to se-
lect, edit, single out, structure, highlight, group, pair, merge, har-
monize, synthesize, focus, organize, condense, reduce, boil down, choose, cat-
egorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, dis-
criminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend, in-

Shapes

186

spect, filter, lump, skip, smooth, chunk, average, approximate, cluster, aggre-
gate, outline, summarize, itemize, review, dip into, flip through, browse, glance
into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the wheat
from the chaff and separate the sheep from the goats. We thrive in information-
thick worlds because of our marvelous and everyday capacity to select, edit, sin-
gle out, structure, highlight, group, pair, merge, harmonize, synthesize, focus, or-
ganize, condense, reduce, boil down, choose, categorize, catalog, classify, list, ab-
stract, scan, look into, idealize, isolate, discriminate, distinguish, screen, pi-
geonhole, pick over, sort, integrate, blend, inspect, filter, lump, skip, smooth, chunk, av-
erage, approximate, cluster, aggregate, outline, summarize, itemize, re-
view, dip into, flip through, browse, glance into, leaf through, skim, re-
fine, enumerate, glean, synopsize, winnow the wheat from the chaff
and separate the sheep from the goats.

Here the bottomskip takes care of subtle rounding issues as well as discarding the
last line in the shape so that we get nicer continuation. There is no full automated
solution for all you can come up with.

Mixing a MetaPost specification into a regular one is also possible. The next exam-
ple demonstrates this as well as the option to remove some lines from a specifica-
tion:

\startparagraphshape[test]
left Oem right Oem
left lem right Oem
metapost {circle}
delete 3
metapost {circle,circle,circle}
delete 7
metapost {circle}
repeat
\stopparagraphshape

You can combine a shape with narrowing a paragraph. Watch the absolute keyword
in the next code. The result is shown in figure 11.7.

\startuseMPgraphic{circle}
lmt parshape [

path = fullcircle scaled TextWidth,
bottomskip = - 1.5LineHeight,
1
\stopuseMPgraphic

Shapes

187

\startparagraphshape[test-1]
metapost {circle} repeat
\stopparagraphshape

\startparagraphshape[test-2]
absolute left metapost {circle} repeat
\stopparagraphshape

\startparagraphshape[test-3]
absolute right metapost {circle} repeat
\stopparagraphshape

\startparagraphshape[test-4]
absolute both metapost {circle} repeat
\stopparagraphshape

\showframe

\startnarrower[4*left,2*right]
\startshapedparagraph[list=test-1, repeat=yes,method=repeat]%
\setupalign[verytolerant,stretch,last]\dontcomplain

\dorecurse{3}{\samplefile{thuan}}

\stopshapedparagraph

\page

\startshapedparagraph[list=test-2, repeat=yes,method=repeat]%
\setupalign[verytolerant,stretch, last]\dontcomplain
\dorecurse{3}{\samplefile{thuan}}

\stopshapedparagraph

\page

\startshapedparagraph[list=test-3, repeat=yes,method=repeat]%
\setupalign[verytolerant,stretch, last]\dontcomplain
\dorecurse{3}{\samplefile{thuan}}

\stopshapedparagraph

\page

\startshapedparagraph[list=test-4, repeat=yes,method=repeat]%
\setupalign[verytolerant,stretch, last]\dontcomplain
\dorecurse{3}{\samplefile{thuan}}

\stopshapedparagraph

\stopnarrower

Shapes

188

Had our

solar system in-

cluded two suns, the prob-
lem would have involved three bod-
ies (the two suns and each planet), and
chaos would have been immedia

¢ obvious.
Planets would have had erratic and unpredictable
orbits, and creatures living on one of these planets
would never have been able to percieve the slightes
harmony. Nor would it have occurred to them that the
universe might be ruled by law
intellect to discover them.

and that it is up to man's
Besides, it is not at all obvi-
ous that life and nce could even emerge in such a
chaotic system. Had our solar system included two suns,
the problem would have involved three bodies (the two suns
and each planet), and chaos would have been immediately
obvious. Planets would have had erratic and unpredictable
orbits, and creatures living on one of these planets would
never have been able to percieve the slightest harmony.
Nor would it have occurred to them that the uni-
verse might be ruled by laws and that it is up to
‘man's intellect to discover them. Besides, it is
not at all obvious that life and conscience

cons

Had our solar system
included two suns, the problem

would have involved three bodies (the two
suns and each planet), and chaos would have be
immediately obvious. Planets would have had erratic
and unpredictable orbits, and creatures living on one of
these planets would never have been able to percieve the sligh
est harmony. Nor would it hav

occurred to them that the univefs
might be ruled by laws and that it is up to man's intellect to discf

them. Besides, it is not at all obvious that life and conscience
even emerge in such a chaotic system. Had our solar system in
two suns, the problem would have involved three bodies (the tw
and each planet), and would have been immediately obvious|
cts would have had erratic and unpredictable orbits, and creature
on one of these planets would never have been able to percieve the s
harmony. Nor would it have occurred to them that the universe mi
ruled by laws and that it is up to man's intellect to discover then
sides, it is not at all obvious that life and conscience could even e

pvir

chaos

nefge
in such a chaotic system. Had our solar system included two duys,
the problem would have involved three hodies (the two suns gndl

each planet), and chaos would have been immediately obvio

;
Planets would have had erratic and unpredictable orbits, and
creatures living on one of these planets would never have
could even emerge in such a chaotic been able to percieve the slightest harmony. Nor
system. Had our solar system would it have occurred to them that the uni-
included two suns, the wverse might be ruled by laws and that
problem it is up to man's intel-
would have involved lect to discover them. Besides, it is
three bodies (the two suns not at all obvious that life and conscience
and each planet), and chaos would could even emerge in such a chaotic system.
have been immediately obvious. Planets
would have had erratic and unpredictable or-
bits, and creatures living on one of these planets
would never have been able to percieve the slightest
harmony. Nor would it have occurred to them that
the universe might be ruled by laws and that it is up to
man's intellect to discover them. Besides, it is not at all
obvious that life and conscience could even emerge in such
a chaotic system.
test 1 test 2, left
3 1
Had our solar Had our solar system included
system included two sun two suns, the problem would have in-
the problem would have involved volved three bodies (the two suns and each
three bodies (the two suns and each planet), and chaos would have been immediately obv
planet), and chaos would have been immediately ous. Planets would have had erratic and unpredictable orlit}
obvious. Planets would have had erratic and unpre- and creatures living on one of these planets would never havf Heen
dictable orbits, and creatures living on one of these plan-
ets would never have been able to percieve the slightest har-

mony. Nor would it have occurred to them that the unive

might be ruled by laws and that it is up to man's intellect to dis-
cover them. Besides, it is not at all obvious that life and consc
could even emerge in such a chaotic system.
included two suns, th

en
Had our solar system
o problem would have involved three bodies|
(the two suns and each planet), and chaos would have been imme
diately obvious. Planets would have had erratic and unpredictable
orbits, and creatures living on one of these planets would never have,
been able to percieve the slightest harmony. Nor would it have oc-
curred to them that the universe might be ruled by laws and that
it is up to man's intellect to discover them. Besides, it is not at
all obvious that life and consciency

e could even emerge in such
a chaotic system. Had our solar system included two suns,
the problem would have involved three bodi

es (the
two suns and each planet), and chaos would have
been immediately obvious. Planets would
have had erratic and unpredictable or-
bits, and creatures living on one
of these planets
would never have be

1 able
to percieve the slightest harmony.
Nor would it have occurred to them that
the universe might be ruled by laws and that it
s up to man's intellect to discover them. Besides, it
is not at all obvious that life and conscience could even
emerge in such a chaotic system.

able to percieve the slightest harmony. Nor would it have occfirfed to
them that the universe might be ruled by laws and that it is up
intellect to discover them. Besides
cons

t man's
thht|life and

it is not at all obvious
cience could even emerge in such a chaotic system. Had oifr folar sy
tem included two suns, the problem would have involved three bofligs (the two
suns and each planet), and chaos would have been immediately objiofis. Planets
would have had erratic and unpredictable orbits, and creatures liing on one of
these planets would never have been able to percieve the slightest hafmony. Nor
would it have occurred to them that the universe might be ruled by |lajvs and that
it is up to man's intellect to discover them. Besides, it is not at al] opvious that
life and conscience could even emerge in such a chaotic system. our solar
system included two suns, the problem would have involved threq bpdies (the
two suns and each planet), and chaos would have been i b
Planets would have had erratic and unpredictable orbits, and|
living on one of these planets would never have been able to| pircieve
the slightest harmony. Nor would it have occurred to thefn |that
the universe might be ruled by laws and that it is up to
intellect to discover them. Besides, it is not at all obvig
that life and conscience could even emerge in such a

catures

hah's
s

chaotic system.

test 3, right

test 4, both

Figure 11.7 Skip compensation

Shapes

189

The shape mechanism has a few more tricks but these are really meant for usage
in specific situations, where one knows what one deals with. The following examples
are visualized in figure 11.8.

\useMPlibrary[dum]
\usemodule[article-basics]

\startbuffer
\externalfigure[dummy] [width=6cm]
\stopbuffer

\startshapedparagraph[text=\getbuffer]
\dorecurse{3}{\samplefile{ward}\par}
\stopshapedparagraph

\page

\startshapedparagraph[text=\getbuffer,distance=1em]
\dorecurse{3}{\samplefile{ward}\par}
\stopshapedparagraph

\page

\startshapedparagraph[text=\getbuffer,distance=1em,
hoffset=-2em]
\dorecurse{3}{\samplefile{ward}\par}
\stopshapedparagraph

\page

\startshapedparagraph[text=\getbuffer,distance=1em,
voffset=-2ex,hoffset=-2em]
\dorecurse{3}{\samplefile{ward}\par}
\stopshapedparagraph

\page
\startshapedparagraph[text=\getbuffer,distance=1em,
voffset=-2ex,hoffset=-2em, lines=1]

\dorecurse{3}{\samplefile{ward}\par}
\stopshapedparagraph

Shapes

\page

190

\startshapedparagraph[width=4cm, lines=4]

\dorecurse{3}{\samplefile{ward}\par}

\stopshapedparagraph

he Earth, as a habitat for animal life, is in old
age and has o fatal illness. Several, in fact. 1t
would be happening whether humans had ever
fvolved or not. But our presence s like the cffect
of an old-age patient who smokes many packs of
igatettes per day—and we bumans are the ciga-
rottcs.
he Earth, as a habitat for animal life, is in old
and has o fatal illness. Several, in fact
would be happening whether humans had ever
evolved or not. But our presence is like the effect of an old-age patient who
smokes many packs of cigarettes per day—and we humans are the cigarettes,
The Earth, as a habitat for animal life, s in old age and has o fatal illness. Several,
in fact. It would be happening whether humans had ever evolved or not. But our
presence is like the effect of an old-age patient who smokes many packs of cigarettes
per day-—and we humans are the cigarcttes.

The Earth, as a habitat for animal lfe, is in old.
age and has a fatal illness. Several, in fact. Tt
would be happening whether humans had ever
evalved or not. But our presence is like the
effect of an old-age patient who smokes many
packs of cigarettcs per day—and we humans
are the cigarettes,

The Earth, as a habitat for animal life, is in old

age and has a fatal illness. Soveral, in fact. It

would be happening whether humans had ever
evolved or not. But our presence is like the effect of an old-ag
many packs of eigarettes per day —and we humans are the cigarctics,

e and has a fatal llness. Soveral

in fact. Tt would be happening whether humans had ever evolved or not. But our

presence islike the effect of an old-nge patient who smokes many packs of cigarettes
per day —and we humans are the cigarcttes,

 patient who smokes

The Earth, as a habitat for animal life, is in old

The Earth, as a habitat for animal life, is in old age
and has o fatal illess. Several, in fact. It would
be happening whether humans had ever evolved or
not. But our presence is like the effect of an old-nge
patient who smokes many packs of cigarettes per
day

and we humans are the cigarette
Barth, as habitat for animal life is in old age

and has o fatal illess. Several, in fact. It would

be happening whether humans had ever evolved or

not. But our presence is like the effect of an old-age
patient who smokes many packs of cigarcttes per day —and we humans are the
The Earth, as a habitat for animal life i in old age and has o fatal illness. Several,
in fact. 1t would be happening whether humans had ever evolved or not. But our
presence is like the effect of an old-age patient who smokes many packs of cigarettes
per day-—and we humans are the cigarettes.

The Earth, as a habitat for animal life, is in old age
and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or
not. But our presence is like the effect of an old-nge
patient who smokes many packs of cigarettes per
sunwigy day—and we bumans are the cigaretcs

The Earth, as a habitat for animal life, is in old age
and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or
not. But our presence is like the effect of an old-ngo
patient who smokes many packs of cigarettes per day—and we humans are the
The Earth, as a habitat for animal lie, is in old age and has a fatal llness. Several,
in fact. It would be happening whether humans had ever evolved or not. But our
presence s like the effect of an old-age patient who smokes many packs of cigarettes
per day—and we humans are the cigarcttcs.

The Earth, as a habitat for animal life, is in old age
and has a fatal illness. Several, in fact. 1t would
be happening whether humans had ever evolved or
not. But our presence is like the effect of an old-age
patient who smokes many packs of cigarettes per
day—and we humans are the ¢
The Earth, as a habitat for animal life, is in old age
and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or
not. But our presence is like the effect of an old-age
patient who smokes many packs of cigarettes per
day—and we humans are the cigarettes.

The Earth, as a habitat for animal lfe, is in old age and has a fatal llness. Several
in fact. Tt would be happening whether humans had ever evolved o not. But our
presence is ike the effect of an old-age patient who smokes many packs of cigarcttes
per day—and we humans are the cigarettes.

The Earth, as a habitat for animal life, is in old age and
hias a fatal illness. Several, in fact. 1t would be happening
whether humas had ever evolved or not. But our presence is
like the effect of an old-age patient who smokes many packs
of cigarettes per day—and we bumans are the cigarettes.

The Earth, as a habitat for animal life s in old age and has a fatal illness. Several,

in fact. It would be happening whether humans had ever evolved or not. But our

presence is like the effect of an old-age patient who smokes many packs of cigarettes
per day-—and we humans are the cigarcttes.

The Earth, as a habitat for animal lfe, is in old age and has a fatal illness. Several,

in fact. 1t would be happening whether humans had ever evolved or not. But our

presence is like the effect of an old-age patient who smokes many packs of cigarettes
per day-—and we humans are the cigarettes.

11.7 Modes

todo: some of the side effects of so called modes

Modes

Figure 11.8 Flow around something

R namnnmann o aamann o nannanaanannanan!

T e e ey

191

11.8 Leaders

Leaders are a basic feature that users probably never run into directly. They repeat
content till it fits the specified width which can be stretched out. The content is type-
set once and it is the backend that does the real work of repetition.

\strut\leaders \hbox{!}\hfill\strut
\strut\xleaders\hbox{!}\hfill\strut
\strut\cleaders\hbox{!}\hfill\strut
\strut\gleaders\hbox{!}\hfill\strut

Here \leaders starts at the left edge and are repeats the box as long as it fits, \xleaders_
till the edges and \cleaders centers the lot. The \gleaders primitive (which is not
in orginal TgX) takes the outer box as reference and further behaves like \cleaders.

RN n i ana nnanannamann o mannanannannanannanannanaanaANn:

R o n s namnanannannanannanuananaAn:

The leader primitives take box or rule but in LuaMetaTgX a glyph can also be specified, wh

\ruledvbox \bgroup \hsize 10cm
\strut\cleaders\hbox{!}\hfill\strut
\egroup

\ruledvbox \bgroup \hsize 10cm
\strut\cleaders\hrule\hfill\strut
\egroup

\ruledvbox \bgroup \hsize 10cm
\strut\cleaders\glyph '\hfill\strut
\egroup

RN A nannannanannannann,

RN nannanaanannanann:

The LuaMetaTgX engine also introduced \uleaders
We show three boxes, a regular one first (red):

X XX XXX XXXX

Leaders

192

\ruledhbox{L\hss R}\space
X XX XXX XXXX

The second one (blue) is also a box but one that stretches upto 100pt and is in a
later stage, when the paragraph has been built, is repackaged to the effective width. The
third example (green) leaves out the background.

X XX _xxx_xxxx L R x xx xxx xxxxX X xX xxx xxxx L R X XX XXX XXXX X XX XXX XXXX_
_X XX XXX XXXX X XX XXX XxxX L. Rl X XX XXX XXXX X XX XXX XxxX L. Rl X XX XXX XXXX X XX XXX XXXX
X XX XXX XXXX X XX XxxX xxxx L. R X xx xxx XxxX X XX XxX xxxx L. R X XX XXX XXXX X XX XXX XXXX
XXX XXX XXXXKOR K. sexpowxxexolx. X Ricooxx xooex xkiek 36 o ook o XX B R MXBX XXX XKKXX XXX XXXXXX L.
_X XX XXX XXXX X XX XXX xxxX L. Rl X XX XXX XXXX X XX XXX XxxX L. Rl X XX XXX XXXX X XX XXX XXXX
_X XX XXX XXXX X XX xxxX xxxx L. Rl x Xxx xxx XxxxX X XX xxX xxxx L. Rl X XX XXX XXXX X XX XXX XXXX

_X XX XXX XXXX X XX XxX XxxX LR X XX XXX XXXX X XX XXX XxXXX LR X XX XXX XXXX
In ConTEXt we have wrapped this feature in the adaptive box mechanism, so here a few a f

\startsetups adaptive:test:a
\setbox\usedadaptivebox\vbox to \usedadaptivetotal \bgroup
\externalfigure
[cow.pdf]
[width=\framedmaxwidth,
frame=on,
height=\usedadaptivetotal]%
\egroup
\stopsetups

\startsetups adaptive:test:b
\setbox\usedadaptivebox\vbox to \usedadaptivetotal \bgroup
\externalfigure
[cow.pdf]
[width=\usedadaptivewidth,
frame=on,
height=\usedadaptivetotal]%
\egroup
\stopsetups

We use this as follows (see figure 11.9 for the result):

\framed[height=18cm,align=middle,adaptive=yes, top=,bottom=] {%
\begstrut \samplefile{tufte} \endstrut
\par

Leaders

193

\adaptivevbox
[strut=yes,setups=adaptive:test:a]
{\showstruts\strut\hsize5cm\hss}%

\par

\adaptivevbox
[strut=yes,setups=adaptive:test:b]
{\showstruts\strut\hsize5cm\hss}%

\par

\begstrut \samplefile{tufte} \endstrut

}

Here is one that you can test yourself:

\startsetups adaptive:test
\setbox\usedadaptivebox\vbox to \usedadaptivetotal \bgroup
\externalfigure
[cow.pdf]
[width=\usedadaptivewidth,
height=\usedadaptivetotall]%
\egroup
\stopsetups

\ruledvbox to \textheight {
\par \begstrut \samplefile{tufte} \endstrut \par
\adaptivevbox[strut=yes,setups=adaptive:test]{\hsize\textwidth\hss}
\par \begstrut \samplefile{tufte} \endstrut

}

The next example comes from the test suite (where it runs over many pages in or-
der to illustrate the idea):

\startMPdefinitions
def TickTock =
interim linecap := squared;
save p ; path p ;
p := fullsquare xysized(AdaptiveWidth, .9(AdaptiveHeight+AdaptiveDepth))

fill p withcolor AdaptiveColor ;

draw bottomboundary (p enlarged (-AdaptiveThickness))
withdashes (3*AdaptiveThickness)
withpen pencircle scaled AdaptiveThickness

Leaders

194

We thrive in information-thick worlds because of our marvelous and everyday
capacity to select, edit, single out, structure, highlight, group, pair, merge,
harmonize, synthesize, focus, organize, condense, reduce, boil down, choose,
categorize, catalog, classify, list, abstract, scan, look into, idealize, isolate,
discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster,
aggregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow
the wheat from the chaff and separate the sheep from the goats.

We thrive in information-thick worlds because of our marvelous and everyday
capacity to select, edit, single out, structure, highlight, group, pair, merge,
harmonize, synthesize, focus, organize, condense, reduce, boil down, choose,
categorize, catalog, classify, list, abstract, scan, look into, idealize, isolate,
discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster,
aggregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow
the wheat from the chaff and separate the sheep from the goats.

Figure 11.9

withcolor white ;
enddef ;
\stopMPdefinitions

\startsetups adaptive:test
\setbox\usedadaptivebox\hbox

Leaders

195

to \usedadaptivewidth
yoffset -.9\usedadaptivedepth
\bgroup
\hss
\startMPcode
TickTock ;
\stopMPcode
\hss
\egroup
\stopsetups

\definecolor[adaptive:tick][.25(blue,green)]
\definecolor[adaptive:tock][.75(blue,green)]

\defineadaptive
[tick]
[setups=adaptive:test,
color=adaptive:tick,
foregroundcolor=white,
foregroundstyle=\infofont,
strut=yes]

\defineadaptive
[tock]
[tick]
[color=adaptive:tock]

\dostepwiserecurse{8}{12}{1}{%
\dostepwiserecurse{5}{15}{1}{%

this~#1.##1 is~#1.##1 test~#1.##1
\ifodd##1\relax

\adaptivebox[tick]{\hss tick #l.##1\hss}
\else

\adaptivebox[tock]{\hss tock #l.##1\hss}
\fi

}

this 8.5 is 8.5 test 8.5 P this 8.6 is 8.6_test 8.6_[FEANIN this 8.7 is 8.7 test 8.7_
_this 8.8_is 8.8_test 8.8 | this 8.9 is 8.9 test 8.9 [¥ENHY this 8.10_is 8.10_test 8.10_
this 8.11 is 8.11 test8.11 MM this 8.12 is8.12 test 8.12 FWMY this 8.13 is8.13 test8.13

Leaders

196

_this 8.14 is8.14 test8.14 ““W*R this8.15 is8.15 test8.15 “VW*® this9.5 is9.5 test9.5

— W W
_this 9.6_is 9.6_test 9.6_““M®R this 9.7 is 9.7 test 9.7 ““W*R this 9.8 is 9.8 test 9.8_
this 9.9 i59.9 test9.9 ““® this9.10 is9.10 test9.10 “¥#® this9.11 is9.11 test9.11

Wr—

this9.12 is9.12 test9.12 “S@®R this9.13 is9.13 test9.13 “WWR this9.14 is9.14 test9.14

— W Wb
_this 9.15 is9.15 test9.1 57%;7this 10.5 is 10.5 test1 0.57m,jhis 10.6 is10.6 test10.6
_this 10.7 is10.7 test1 0.7_m;_this 10.8 is10.8 test1 0.8_mg_this 10.9 is10.9 test10.9

_this 10.10_is 10.10 _test 10.10 "% this10.11 is 10.11 test 10.11_m$_this 10.12 is10.12 t
_this 10.13 is 10.13 test 10.13_mh_this 10.14 is10.14 test 10.14_m¢_this 10.15 is10.15 t
_ this11.5 is11.5 test11 .S_M,_this 11.6 is11.6 test11 .G_M,_this 11.7 is11.7 test11.7_
_this11.8 is11.8 test11 .S_W,_this 11.9 is11.9 test11 .9_mg_this 11.10 is11.10 test11.10
~this11.11 is11.11 test11.11 mlbw_this11.12__is11.12_173$t11.12;‘§!§ﬁLﬂns11.13_'1511.13_1:1
this11.14 is11.14 test1 1.14%;_this 11.15 is11.15 test1 1.15_%,_&15 12.5 is12.5 tes
_this 12.6 is12.6 test 12.6_m,jhis 12.7 is12.7 test 12.7_w¢_this 12.8 is12.8 test12.8
_this 12.9 is12.9 test 12.9_mﬁ_this 12.10_is 12.10_test 12.10_"9®*R this 12.11 is12.11 test1
_this 12.12 is12.12 test12.12 %&_this 12.13 is12.13 test12.13 "H&®R this 12.14 is 12.14 t,

_this 12.15 is 12.15_test 12.15_ “We®R,

In the next example the graphics adapt to the available space:

\startsetups adaptive:test
\setbox\usedadaptivebox\hbox
to \usedadaptivewidth
yoffset -\usedadaptivedepth
\bgroup
\externalfigure
[cow.pdf]
[width=\usedadaptivewidth,
height=\dimexpr\usedadaptivetotal\relax]%
\egroup
\stopsetups

\dostepwiserecurse{1}{50}{1}{%

this~#1 is~#1 test~#1

{\adaptivebox[strut=yes, setups=adaptive:test]{}}
}

this 1 is 1 test l_ﬂ_this 2 is 2 test Z_M_this 3 is 3 test B_M_this 4 is 4 test4
_this 5_is 5_test 5_“#} this 6_is 6_test 6_“¥#} this 7 is 7 test 7) this 8 is 8 test 8_
_this 9 is9_test 9 ¥ this 10_is 10_test 10 ¥ this 11 is 11 _test 11 Y this 12 is 12 test12_
this 13 is 13 test 13“VW®R this 14 is 14 test 14 ““W®R this 15 is 15 test 15_
_this 16_is 16_test 16_““W®R this 17 is 17 test 17 ““W®R this 18 is 18 test 18_

Leaders

197

_this 19_is 19_test 19 ““W®R this 20 is 20_test 20_““W®R this 21 is 21 test 21_
_this 22 is 22_test 22_“VW®R this 23 is 23 test 23_““W®R this 24 is 24 test 24_
_this 25_is 25_test 25_““W®R this 26 is 26_test 26_“VWeR this 27 is 27 test 27_
_this 28_is 28 test 28_““W®R this 29 is 29 test 29 ““W®R this 30 is 30 _test 30_
this 31 is 31 test 31 ““W®R this 32 is 32 test 32 “VW®R this 33 is 33 test 33
_this 34 _is 34_test 34_““WSR this 35 is 35 test 35 “VWeR this 36 is 36 _test 36_
_this 37_is 37_test 37_““4WPR this 38 is 38 test 38_““W®R this 39 is 39 test 39_
_this 40 _is 40_test 40 ““W®R this 41 is 41 test 41 “VW®R this 42 is 42 test 42_
_this 43_is 43_test 43_““W®R this 44 is 44 test 44 “VWPR this 45 is 45 test 45_
_this 46_is 46_test 46_“W®R this 47 is 47 test 47 ““W®R this 48 is 48 test 48_
_this 49 is 49 test 49 W} this 50 _is 50_test 50 W}

11.9 Prevdepth

The depth of a box is normally positive but rules can have a negative depth in or-
der to _get a rule above the baseline. When TgX was written the assumption was that a neg:
MetaTgX. However, as dealing with the property is somewhat special in the engine you shot

line 1\par line 2 \par \nointerlineskip line 3 \par

Assuming that we haven't set any inter paragraph spacing this gives:

line 1

line 2
line 3

Here \nointerlineskip is (normally) defined as:
\prevdepth-1000pt
although in ConTgXt we use \ignoredepthcriterion instead of the hard coded dimension. V

\ruledhbox \bgroup
\PrevTest{-10.0pt}\quad
\PrevTest{-20.0pt}\quad
\PrevTest{-49.9pt}\quad
\PrevTest{-50.0pt}\quad
\PrevTest{-50.1pt}\quad
\PrevTest{-60.0pt}\quad
\PrevTest{-80.0pt}%

\egroup

Prevdepth

198

In this example we set \ignoredepthcriterion to —50.0pt instead of the normal —1000pt. ’
helper is defined as:

\def\PrevTest#1%
{\setbox0\ruledhbox{\strut$\tf#1$}%
\dp0=#1
\vbox\bgroup\hsizedem
FIRST\par
\unhbox0\par
LAST\par
\egroup}

or

\def\PrevTest#1%
{\setboxO\ruledhbox{\strut$\tf#1$}%
\dp0O=#1
\vbox\bgroup
\ruledhbox{FIRST}\par
\box0\par
\ruledhbox{LAST}\par
\egroup}

The result is shown in figures 11.10 and 11.11. The first case is what we normally have in_

JFIRST | FIRST | .FIRST | .FIRST ' .FIRST ' .FIRST |

i:l,QQ,pﬁ .—20.0pt .—-49.9pt .—50.0pt .—~50.1pt .~60.0pt .—80.0pt

Figure 11.10
FIRST FIRST [FIRST
—10.0pt —-20.0pt —-49.9pt
LAST LAST LAST LAST [LAST LAST LAST

FIRST FIRST

~50.0pt —50.1pt CIRST
—60.0pt FIRST

—80.0pt
Figure 11.11

I'm sure one can use this effect otherwise than intended but I doubt is any user is
willing to do this but the fact that we can lower the criterion makes for nice exper-
iments. Just for the record, in figure 11.12 you see what we get with positive values:

Prevdepth

199

\ruledhbox \bgroup
\PrevTest{10.0pt}\quad
\PrevTest{20.0pt}\quad
\PrevTest{49.9pt}\quad
\PrevTest{50.0pt}\quad
\PrevTest{50.1lpt}\quad
\PrevTest{60.0pt}\quad
\PrevTest{80.0pt}%

\egroup

FIRST
80.0p

FIRST FIRST 60.0p
49.9pt 50.0pt 50.1p

FIRST 20.0p
10.0p

LAST AST _TAST TAST AST TAST __[TAST
Figure 11.12

Watch the interline skip kicking in when we make the depth larger than in \ignore-
depthcriterion being 50pt.
11.10 Normalization

todo: users don't need to bother about this but it might be interesting anyway

11.11 Dirty tricks

todo: explain example for combining paragraphs

11.12 Penalties

In figiure 11.13 we demonstrate the (accumulated) effect of a few penalty arrays that you c

\interlinepenalty 0
\clubpenalty 0
\widowpenalty 0
\orphanpenalty 0
\shapingpenalty 0

Normalization

200

\clubpenalties 5 1000 2000 3000 4000 5000 % 6 -> 0
\widowpenalties 5 10 20 30 40 50 $ 6 -> 0
\orphanpenalties 5 1 2 3 4 5%6 ->0
\interlinepenalties 5 100000 200000 300000 400000 500000 % 6 -> 0

It actually makes sense to explicitly zero the last entry because as you can see in
the figure the last one gets used when we run out of entries.

Can you guess what the next specification does?

\widowpenalties 3 options \largestspecificationoptioncode 3000 2000 1000
\clubpenalties 3 options \largestspecificationoptioncode 30 20 10

11.13 Par passes

Everything comes together in what we call par passes. Before we explain them first
something about a feature that makes setting up for instance \widowpenalties eas-
ier. Here are a few definitions:

\specificationdef\strictwidowpenalties \widowpenalties \plusthree
\maxcount \maxcount \zerocount \relax

\specificationdef\strictwidowpenaltiestwo \widowpenalties \plustwo
\maxcount \zerocount \relax

\specificationdef\strictwidowpenaltiesthree \widowpenalties \plusthree
\maxcount \maxcount \zerocount \relax

\specificationdef\strictwidowpenaltiesfour \widowpenalties \plusfour
\maxcount \maxcount \maxcount \zerocount \relax

These are defined in the core and hooked into the alignment interface:

\installaligncommand{strictwidows} {\strictwidowpenalties }
\installaligncommand{strictwidows:2}{\strictwidowpenaltiestwo }
\installaligncommand{strictwidows:3}{\strictwidowpenaltiesthree}
\installaligncommand{strictwidows:4}{\strictwidowpenaltiesfour }

We also have four such ‘strict’ definitions for club but only one for broken penalties. For
orphan penalties we have four ‘less’ orphan penalties but for widow, club and bro-

ken we have only one. So we end up with lessorphans, lessorphans:2, lessorphans:3, le
phans:4, defaultwidows, defaultclubs, defaultbroken, strictwidows, strictwid-

ows:2, strictwidows:3, strictwidows:4, strictclubs, strictclubs:2, strictclubs:3, str:
clubs:4 and strictbroken.

Par passes

201

e Earth, as ashabitat for animal life,
in old age and has a<fatal illness. Sev-
1, in fact. It would be happening whe
mans had ever evolved or not. But
r presence is like the effect of an old-
e patient who smokes many packs of

hescigarettes.sm
e Earth, as ashabitat for animal life,
is in old age and has asfatal illness. Sev-
al, in fact. It would be happening whe
mans had ever evolved or not. But
r presence is like the effect of an old-
e patient who smokes many packs of
igarettes per day—andsweshumanssare
hescigarettes.mm

igarettes per day—andsweshumanssares

e Earth, as ashabitat for animal life,
in old age and has asfatal illness. Sev-
1, in fact. It would be happening whe
mans had ever evolved or not. But
r presence is like the effect of an old-
e patient who smokes many packs of

hescigarettes.sm

e Earth, as ashabitat for animal life,
in old age and has asfatal illness. Sev-
1, in fact. It would be happening whe
mans had ever evolved or not. But
r presence is like the effect of an old-
e patient who smokes many packs of

hescigarettes.mm

\normalizeparmode 8

\normalizeparmode 8

e Earth, as ashabitat for animal life,
is in old age and has asfatal illness. Sev-
al, in fact. It would be happening whe
mans had ever evolved or not. But
r presence is like the effect of an old-
e patient who smokes many packs of

hescigarettes.mm
e Earth, as ashabitat for animal life,
is in old age and has asfatal illness. Sev-
al, in fact. It would be happening whe
mans had ever evolved or not. But
r presence is like the effect of an old-
e patient who smokes many packs of
igarettes per day—andsweshumanssare
hescigarettes.mm

igarettes per day—andsweshumanssares

e Earth, as ashabitat for animal life,
in old age and has asfatal illness. Sev-
1, in fact. It would be happening whe
mans had ever evolved or not. But
r presence is like the effect of an old-
e patient who smokes many packs of

hescigarettes.mm

e Earth, as ashabitat for animal life,
in old age and has asfatal illness. Sev-
1, in fact. It would be happening whe
mans had ever evolved or not. But
r presence is like the effect of an old-
e patient who smokes many packs of

hescigarettes.mm

newline and \normalizeparmode 8

newline and \normalizeparmode 8

Figure 11.13 Penalty lists

igarettes per day—andsweshumanssares

igarettes per day—andsveshumanssarems

ther

ther

igarettes per day—andi/ve.humans.arer

ther

ther

jgarettes per day—andi/ve.humans.'irer

You can also use \specificationdef for other constructs that have this multiple vari-

able setup. Now to par passes. This is a mechanism unique to LuaMetaTgX that permits mo

todo: copy some from article when published

Par passes

202

11.13 Colofon

Author Hans Hagen

ConTgXt 2025.02.19 14:35
LuaMetaTgX 2.11.07 ‘ 20250219
Support www.pragma-ade.com

contextgarden.net
ntg-context@ntg.nl

Colofon

203

12 Alignments

low level

1EX

alignments

204

Contents

12.1 Introduction 204
12.2 Between the lines 206
12.3 Pre-, inter- and post-tab skips 208
12.4 Cell widths 211
12.5 Plugins 212
12.6 Pitfalls and tricks 215
12.7 Rows 218
12.8 Templates 220
12.9 Pitfalls 221
12.10 Remark 223

12.1 Introduction
TEX has a couple of subsystems and alignments is one of them. This mechanism is used to

\halign {
\alignmark\hss \aligntab
\hss\alignmark\hss \aligntab
\hss\alignmark \cr
1.1 \aligntab 2,2 \aligntab 3=3 \cr
11.11 \aligntab 22,22 \aligntab 33=33 \cr
111.111 \aligntab 222,222 \aligntab 333=333 \cr

}

That one doesn't look too complex and comes out as:

1.1 2,2 3=3_
11.11 22,22 33=33_
111.111 222,222 333=333_

This is how the previous code comes out when we use one of the ConTgXt table mechanism

\starttabulate[|l|c|r]|]
\NC 1.1 \NC 2,2 \NC 3=3 \NC \NR
\NC 11.11 \NC 22,22 \NC 33=33 \NC \NR
\NC 111.111 \NC 222,222 \NC 333=333 \NC \NR
\stoptabulate

Introduction

205

1.1 2,2 3=3
11.11 22,22 33=33
111.111 222,222 333=333

That one looks a bit different with respect to spaces, so let's go back to the low level
variant:

\halign {

\alignmark\hss \aligntab
\hss\alignmark\hss \aligntab
\hss\alignmark \cr

1.1\aligntab 2,2\aligntab 3=3\cr
11.11\aligntab 22,22\aligntab 33=33\cr
111.111\aligntab 222,222\aligntab 333=333\cr

}

Here we don't have spaces in the content part and therefore also no spaces in the
result:

1.1 2,2 3=3
11.11 22,22 33=33
111.111222,222333=333

You can automate dealing with unwanted spacing:

\halign {

\ignorespaces\alignmark\unskip\hss \aligntab
\hss\ignorespaces\alignmark\unskip\hss \aligntab
\hss\ignorespaces\alignmark\unskip \cr
1.1 \aligntab 2,2 \aligntab 3=3 \cr
11.11 \aligntab 22,22 \aligntab 33=33 \cr
111.111 \aligntab 222,222 \aligntab 333=333 \cr

}

We get:

1.1 2,2 3=3_
1111 22,22 33=33_
111.111 222,222 333=333_

By moving the space skipping and cleanup to the so called preamble we don't need
to _deal with it in the content part. We can also deal with inter-column spacing there:

Introduction

206

\halign {

\ignorespaces\alignmark\unskip\hss \tabskip lem \aligntab
\hss\ignorespaces\alignmark\unskip\hss \tabskip lem \aligntab
\hss\ignorespaces\alignmark\unskip \tabskip 0pt \cr
1.1 \aligntab 2,2 \aligntab 3=3 \cr
11.11 \aligntab 22,22 \aligntab 33=33 \cr
111.111 \aligntab 222,222 \aligntab 333=333 \cr

}
1.1 2,2 3=3_
11.11_ 22,22 33=33_

111.111_ 222,222 333=333_

If for the moment we forget about spanning columns (\span) and locally ignoring
preamble entries (\omit) these basic commands are not that complex to deal with. Here
we use \alignmark but that is just a primitive that we use instead of # while \aligntab is
the same as & but using the characters instead also assumes that they have the cat-

code that relates to a parameter and alignment tab (and in ConIgXt that is not the case). T
have-book.

12.2 Between the lines

The individual rows of a horizontal alignment are treated as lines. This means that, as_
we_see in the previous section, the interline spacing is okay. However, that also means_
that when we mix the lines with rules, the normal TgX habits kick in. Take this:

\halign {
\ignorespaces\alignmark\unskip\hss \tabskip lem \aligntab
\hss\ignorespaces\alignmark\unskip\hss \tabskip lem \aligntab

\hss\ignorespaces\alignmark\unskip \tabskip 0pt \cr
\noalign{\hrule}

1.1 \aligntab 2,2 \aligntab 3=3 \cr
\noalign{\hrule}

11.11 \aligntab 22,22 \aligntab 33=33 \cr
\noalign{\hrule}

111.111 \aligntab 222,222 \aligntab 333=333 \cr
\noalign{\hrule}

}

The result doesn't look pretty and actually, when you see documents produced by
TEX using alignments you should not be surprised to notice rather ugly spacing. The user (c

Between the lines

207

W
I
W

1.1 2,2

|

J

The solution is often easy:

\halign {

\ignorespaces\strut\alignmark\unskip\hss \tabskip lem \aligntab
\hss\ignorespaces\strut\alignmark\unskip\hss \tabskip lem \aligntab
\hss\ignorespaces\strut\alignmark\unskip \tabskip 0pt \cr
\noalign{\hrule}

1.1 \aligntab 2,2 \aligntab 3=3 \cr
\noalign{\hrule}
11.11 \aligntab 22,22 \aligntab 33=33 \cr
\noalign{\hrule}
111.111 \aligntab 222,222 \aligntab 333=333 \cr
\noalign{\hrule}

1.1 2,2 3=3_
11.11_ 22,22 33=33_
111.111_ 222,222 333=333_

The user will not notice it but alignments put some pressure on the general TEX scanner. A
So let's summarize what happens:

. scan the preamble that defines the cells (where the last one is repeated when needed)
. check for \cr, \noalign or a right brace; when a row is entered scan for cells

in parallel the preamble so that cell specifications can be applied (then start again)
3. package the preamble based on information with regards to the cells in a column
4. apply the preamble packaging information to the columns and also deal with pend-

ing cell spans_

5. flush the result to the current list, unless packages in a box a \halign is seen
as paragraph and rows as lines (such a table can split)

N =

The second (repeated) step is complicated by the fact that the scanner has to look
ahead for a \noalign, \cr, \omit or \span and when doing that it has to expand

what comes. This can give side effects and often results in obscure error messages. When
for instance an \if is seen and expanded, the wrong branch can be entered. And

when you use protected macros embedded alignment commands are not seen at all; of
course_they still need to produce valid operations in the current context.

Between the lines

19

208

All these side effects are to be handled in a macro package when it wraps alignments_
in a high level interface and ConTgXt does that for you. But because the code doesn't alway
MetaTgX the alignment mechanism has been extended a bit over time.

Nesting \noalign is normally not permitted (but one can redefine this primitive such
that a macro package nevertheless handles it). The first extension permits nested
usage of \noalign. This has resulted of a little reorganization of the code. A next
extension showed up when overload protection was introduced and extra prefixes were
added. We can signal the scanner that a macro is actually a \noalign variant: 1°

\noaligned\protected\def\InBetween{\noalign{...}}

Here the \InBetween macro will get the same treatment as \noalign and it will not
trigger an error. This extension resulted in a second bit of reorganization (think of
internal command codes and such) but still the original processing of alignments was
there.

A third overhaul of the code actually did lead to some adaptations in the way align-
ments are constructed so let's move on to that.

12.3 Pre-, inter- and post-tab skips

The basic structure of a preamble and row is actually not that complex: it is a mix
of tab skip glue and cells (that are just boxes):

\tabskip 10pt

\halign {
\strut\alignmark\tabskip 12pt\aligntab
\strut\alignmark\tabskip 14pt\aligntab
\strut\alignmark\tabskip 16pt\cr
\noalign{\hrule}
cell 1.1\aligntab cell 1.2\aligntab cell 1.3\cr
\noalign{\hrule}
cell 2.1\aligntab cell 2.2\aligntab cell 2.3\cr
\noalign{\hrule}

}

The tab skips are set in advance and apply to the next cell (or after the last one).

One can argue for using the name \peekaligned because in the meantime other alignment primitives also
can use this property.

Pre-, inter- and post-tab skips

209

suCell 1. 1swwcell 1.2sumcell 1,300
TB:l0.0(Ce].]._Z °]. TB:12.000C e].]._2 ° 2TB:14.000 Ce].]._z ° 3TB:16.000

In the ConTgXt table mechanisms the value of \tabskip is zero in most cases. As in:

\tabskip Opt

\halign {
\strut\alignmark\aligntab
\strut\alignmark\aligntab
\strut\alignmark\cr
\noalign{\hrule}
cell 1.1\aligntab cell 1.2\aligntab cell 1.3\cr
\noalign{\hrule}
cell 2.1\aligntab cell 2.2\aligntab cell 2.3\cr
\noalign{\hrule}

}

When these ships are zero, they still show up in the end:

cell 1.1cell 1.2cell 1.3
cell 2.1cell 2.2cell 2.3

Normally, in order to achieve certain effects there will be more align entries in the
preamble than cells in the table, for instance because you want vertical lines between
cells. When these are not used, you can get quite a bit of empty boxes and zero skips. Now
course this is seldom a problem, but when you have a test document where you want

to show font properties in a table and that font supports a script with some ten thou-

sand glyphs, you can imagine that it accumulates and in LuaTgX (and LuaMetaTgX) nodes a:
TEXt we_get messages _on the console that node memory is bumped. 2°

20 T suppose it was a coincidence that a few weeks after these features came available a user consulted the
mailing list about a few thousand page table that made the engine run out of memory, something that could
be cured by enabling these new features.

Pre-, inter- and post-tab skips

210

After playing a bit with stripping zero tab skips I found that the code would not re-
ally benefit from such a feature: lots of extra tests made it quite ugly. As a result

a first alternative was to just strip zero skips before an alignment got flushed. At
least we're then a bit leaner in the processes that come after it. This feature is now
available as one of the normalizer bits.

But, as we moved on, a more natural approach was to keep the skips in the pream-
ble, because that is where a guaranteed alternating skip/box is assumed. It also makes
that the original documentation is still valid. However, in the rows construction we

can be lean. This is driven by a keyword to \halign:

\tabskip Opt

\halign noskips {
\strut\alignmark\aligntab
\strut\alignmark\aligntab
\strut\alignmark\cr
\noalign{\hrule}
cell 1.1\aligntab cell 1.2\aligntab cell 1.3\cr
\noalign{\hrule}
cell 2.1\aligntab cell 2.2\aligntab cell 2.3\cr
\noalign{\hrule}

}

No zero tab skips show up here:

cell 1.1cell 1.2cell 1.3
cell 2.1cell 2.2cell 2.3

When playing with all this the LuaMetaTgX engine also got a tracing option for alignments.
=2 results in:

<preamble>
\glue[ignored][...] 0.0pt
\alignrecord

..{\strut }

..<content>

Pre-, inter- and post-tab skips

211

..{\endtemplate }
\glue[ignored][...] 0.0pt
\alignrecord

..{\strut }

..<content>
..{\endtemplate }
\glue[ignored][...] 0.0pt
\alignrecord

..{\strut }

..<content>
..{\endtemplate }
\glue[ignored][...] 0.0pt

The ignored subtype is (currently) only used for these alignment tab skips and it
triggers _a check later on when the rows are constructed. The <content> is what get
injected in the cell (represented by \alignmark). The pseudo primitives are internal
and not public.

12.4 Cell widths

Imagine this:

\halign {
x\hbox to 3cm{\strut \alignmark\hss}\aligntab
x\hbox to 3cm{\strut\hss\alignmark\hss}\aligntab
x\hbox to 3cm{\strut\hss\alignmark \cr
cell 1.1\aligntab cell 1.2\aligntab cell 1.3\cr
cell 2.1\aligntab cell 2.2\aligntab cell 2.3\cr

}

which renders as:

ccell 1.1 X cell 1.2 .Kx cell 1.3
xcell 2.1 X cell 2.2 .Kx cell 2.3

A reason to have boxes here is that it enforces a cell width but that is done at the
cost of an extra wrapper. In LuaMetaTgX the hlist nodes are rather large because we have

\halign {
x\tabsize 3cm\strut \alignmark\hss\aligntab

Cell widths

212

x\tabsize 3cm\strut\hss\alignmark\aligntab
x\tabsize 3cm\strut\hss\alignmark\hss\cr

cell 1.1\aligntab cell 1.2\aligntab cell 1.3\cr
cell 2.1\aligntab cell 2.2\aligntab cell 2.3\cr

}

If you look carefully you will see that this time we don't have the embedded boxes:

xcell 1.1 X cell 1.2x cell 1.3
wxeell 2.1 cell 2.2 cell 2.3

So, both the sparse skip and new \tabsize feature help to make these extreme ta-
bles (spanning hundreds of pages) not consume irrelevant memory and also make
that later on we don't have to consult useless nodes.

12.5 Plugins

Yet another LuaMetaTEX extension is a callback that kicks in between the preamble preroll
TEXt table mechanisms.

\starttabulate[|1G{.}|cG{,}|rG{=}|cG{x}|]

\NC 1.1 \NC 2,2 \NC 3=3 \NC a OxFF \NC \NR
\NC 11.11 \NC 22,22 \NC 33=33 \NC b OxFFF \NC \NR
\NC 111.111 \NC 222,222 \NC 333=333 \NC ¢ OxFFFF \NC \NR
\stoptabulate

The tabulate mechanism in ConTgXt is rather old and stable and it is the preferred way to «

1.1 2,2 3=3 a OxFF
11.11 22,22 33=33 b OxFFF
111.111 222,222 333=333 c OxFFFF

Let's make clear that this is not an engine feature but a ConTgXt one. It is however made ¢

\halign noskips \alignmentcharactertrigger \bgroup
\tabskip2em
\setalignmentcharacter.\ignorespaces\alignmark\unskip\hss \aligntab

\hss\setalignmentcharacter,\ignorespaces\alignmark\unskip\hss \aligntab
\hss\setalignmentcharacter=\ignorespaces\alignmark\unskip \aligntab
\hss \ignorespaces\alignmark\unskip\hss \cr

1.1 \aligntab 2,2 \aligntab 3=3 \aligntab \setalignmentcharacter{.}\relax 4.4\cr

11.11 \aligntab 22,22 \aligntab 33=33 \aligntab \setalignmentcharacter{, }\relax 44,44\cr
111.111 \aligntab 222,222 \aligntab 333=333 \aligntab \setalignmentcharacter{!}\relax 444!444\cr

Plugins

213

x \aligntab x \aligntab x \aligntab \setalignmentcharacter{/}\relax /\cr

.1 \aligntab ,2 \aligntab =3 \aligntab \setalignmentcharacter{?}\relax ?4\cr

.111 \aligntab ,222 \aligntab =333 \aligntab \setalignmentcharacter{=}\relax 44=444\cr
\egroup

This rather verbose setup renders as:

1.1 2,2 3=3_ 4.4
11.11 22,22 33=33_ 44,44
111.111 222,222 333=333 444444

X X X /
N 2 =3 ?4
A11 ,222 =333 44=444

Using a high level interface makes sense but local control over such alignment too, so
here follow some more examples. Here we use different alignment characters:

\starttabulate[| LG{.}|cGq{,}|rG{=}|cG{x}|]

\NC 1.1 \NC 2,2 \NC 3=3 \NC a OxFF \NC \NR
\NC 11.11 \NC 22,22 \NC 33=33 \NC b OxFFF \NC \NR
\NC 111.111 \NC 222,222 \NC 333=333 \NC ¢ OxFFFF \NC \NR
\stoptabulate

1.1 2,2 3=3 a OxFF
11.11 22,22 33=33 b OxFFF
111.111 222,222 333=333 c OxFFFF

In this example we specify the characters in the cells. We still need to add a spec-
ifier in the preamble definition because that will trigger the plugin.

\starttabulate[|1G{}|rG{}|]

\NC left \NC right \NC\NR

\NC \showglyphs \setalignmentcharacter{.}1.1 \NC \setalignmentcharacter{.}1.1 \NC\NR

\NC \showglyphs \setalignmentcharacter{,}11,11 \NC \setalignmentcharacter{,}11,11 \NC\NR

\NC \showglyphs \setalignmentcharacter{=}111=111 \NC \setalignmentcharacter{=}111=111 \NC\NR
\stoptabulate

left right
1.1 1.1
11,11 11,11
111=111 111=111

You can mix these approaches:

\starttabulate[|1G{.}|rG{}|]
\NC left \NC right \NC\NR

Plugins

214

\NC 1.1 \NC \setalignmentcharacter{.}1.1 \NC\NR
\NC 11.11 \NC \setalignmentcharacter{.}11.11 \NC\NR
\NC 111.111 \NC \setalignmentcharacter{.}111.111 \NC\NR

\stoptabulate
left right
1.1 1.1

11.11 11.11
111.111 111.111

Here the already present alignment feature, that at some point in tabulate might use
this new feature, is meant for numbers, but here we can go wild with words, although
of course you need to keep in mind that we deal with typeset text, so there may be
no match.

\starttabulate[| lG{.}|rG{.}|]
\NC foo.bar \NC foo.bar \NC \NR
\NC o0o.ba \NC o0o0.ba \NC \NR
\NC o.b \NC o.b \NC \NR
\stoptabulate

foo.bar foo.bar
00.ba 00.ba
0.b 0.b

This feature will only be used in know situations and those seldom involve advanced
typesetting. However, the following does work: 2!

\starttabulate[| cG{d}|]
\NC \smallcaps abcdefgh \NC \NR

\NC xdy \NC \NR
\NC \sl xdy \NC \NR
\NC \tttf xdy \NC \NR
\NC \tfd d \NC \NR
\stoptabulate
abc d efgh

xdy

xdy

21 Should this be an option instead?

Plugins

215

xdy

d

As always with such mechanisms, the question is “Where to stop?” But it makes for
nice demos and as long as little code is needed it doesn't hurt.

12.6 Pitfalls and tricks

The next example mixes bidirectional typesetting. It might look weird at first sight
but the result conforms to what we discussed in previous paragraphs.

\starttabulate[|1G{.}|1G{}]|]
\NC \righttoleft 1.1 \NC \righttoleft \setalignmentcharacter{.}1.1 \NC\NR

\NC 1.1 \NC \setalignmentcharacter{.}1.1 \NC\NR
\NC \righttoleft 1.11 \NC \righttoleft \setalignmentcharacter{.}1.11 \NC\NR
\NC 1.11 \NC \setalignmentcharacter{.}1.11 \NC\NR
\NC \righttoleft 1.111 \NC \righttoleft \setalignmentcharacter{.}1.111 \NC\NR
\NC 1.111 \NC \setalignmentcharacter{.}1.111 \NC\NR
\stoptabulate
1.1 1.1

1.1 1.1

11.1 11.1
1.11 1.11
111.1 111.1
1.111 1.111

In case of doubt, look at this:

\starttabulate[|1G{.}|1G{}|1G{.}|1G{}|]

\NC \righttoleft 1.1 \NC \righttoleft \setalignmentcharacter{.}1.1 \NC
1.1 \NC \setalignmentcharacter{.}1.1 \NC\NR

\NC \righttoleft 1.11 \NC \righttoleft \setalignmentcharacter{.}1.11 \NC
1.11 \NC \setalignmentcharacter{.}1.11 \NC\NR

\NC \righttoleft 1.111 \NC \righttoleft \setalignmentcharacter{.}1.111 \NC
1.111 \NC \setalignmentcharacter{.}1.111 \NC\NR

\stoptabulate

1.1 1.1 1.1 1.1
11.1 11.1 1.11 1.11
111.1 111.1 1.111 1.111

The next example shows the effect of \omit and \span. The first one makes that in
this cell the preamble template is ignored.

\halign \bgroup

Pitfalls and tricks

216

\tabsize 2cm\relax [\alignmark]\hss \aligntab
\tabsize 2cm\relax \hss[\alignmark]\hss \aligntab
\tabsize 2cm\relax \hss[\alignmark]\cr

1\aligntab 2\aligntab 3\cr
\omit 1\aligntab \omit 2\aligntab \omit 3\cr
1\aligntab 2\span 3\cr
1\span 2\aligntab 3\cr
1\span 2\span 3\cr
1\span \omit 2\span \omit 3\cr
\omit 1\span \omit 2\span \omit 3\cr

\egroup

Spans are applied at the end so you see a mix of templates applied.

Wl23 i :

When you define an alignment inside a macro, you need to duplicate the \alignmark sig-
nals. This is similar to embedded macro_definitions. But in LuaMetaTgX we can get around

\halign \bgroup
\tabsize 2cm\relax \aligncontent\hss \aligntab
\tabsize 2cm\relax \hss\aligncontent\hss \aligntab
\tabsize 2cm\relax \hss\aligncontent\cr
1\aligntab 2\aligntab 3\cr

Pitfalls and tricks

217

A\aligntab B\aligntab C\cr

\egroup
1 2 3
A B C

In this example we still have to be verbose in the way we align but we can do_this:

\halign \bgroup
\tabsize 2cm\relax \aligncontentleft \aligntab
\tabsize 2cm\relax \aligncontentmiddle\aligntab
\tabsize 2cm\relax \aligncontentright \cr
1\aligntab 2\aligntab 3\cr
A\aligntab B\aligntab C\cr

\egroup

Where the helpers are defined as:

\noaligned\protected\def\aligncontentleft
{\ignorespaces\aligncontent\unskip\hss}

\noaligned\protected\def\aligncontentmiddle
{\hss\ignorespaces\aligncontent\unskip\hss}

\noaligned\protected\def\aligncontentright
{\hss\ignorespaces\aligncontent\unskip}

The preamble scanner see such macros as candidates for a single level expansion
so it will inject the meaning and see the \aligncontent eventually.

1 2 3
A B C

The same effect could be achieved by using the \span prefix:
\def\aligncontentleft{\ignorespaces\aligncontent\unskip\hss}
\halign { ... \span\aligncontentleft ...}

One of the reasons for not directly using the low level \halign command is that it's

a lot of work but by providing a set of helpers like here might change that a bit. Keep
in mind that much of the above is not new in the sense that we could not achieve

the same already, it's just a bit programmer friendly.

Pitfalls and tricks

218

12.7 Rows

Alignment support is what the documented source calls ‘interwoven’. When the en-

gine scans for input it processing text, math or alignment content. While doing align-

ments it collects rows, and inside these cells but also deals with material that ends

up in between. In LuaMetaTgX [tried to isolate the bits and pieces as good as possible but
set’ state.

Scanning starts with interpreting the preamble, and then grabbing rows. There is

some nasty lookahead involved for \noalign, \span, \omit, \cr and \crcr _and that

is not code one wants to tweak too much (although we did in LuaMetaTgX). This means for
start a row here’ primitive is sort of tricky (but it might happen some day) which

in turn means that it is not really possible to set row properties. As an experiment

we can set some properties now by hijacking \noalign and storing them on the align-

ment stack (indeed: at the cost of some extra overhead and memory). This permits

the following:

\halign {
\hss
\ignorespaces \alignmark \removeunwantedspaces
\hss
\quad \aligntab \quad
\hss
\ignorespaces \alignmark \removeunwantedspaces
\hss
\cr
\noalign xoffset 40pt {}
{\darkred cell one} \aligntab {\darkgray cell one} \cr
\noalign orientation "002 {}
{\darkgreen cell one} \aligntab {\darkblue cell one} \cr
\noalign xoffset 40pt {}
{\darkred cell two} \aligntab {\darkgray cell two} \cr
\noalign orientation "002 {}
{\darkgreen cell two} \aligntab {\darkblue cell two} \cr
\noalign xoffset 40pt {}
{\darkred cell three} \aligntab {\darkgray cell three} \cr
\noalign orientation "002 {}
{\darkgreen cell three} \aligntab {\darkblue cell three} \cr
\noalign xoffset 40pt {}
{\darkred cell four} \aligntab {\darkgray cell four} \cr
\noalign orientation "002 {}

Rows

219

{\darkgreen cell four} \aligntab {\darkblue cell four} \cr

cell one cell one
~ouo [[@9 ~ouo [[92

cell two cell two_
~0M] [[89 —OM] T[99

cell three cell| three
—o0IY] 1[99 —ooIY] 1[99

cell _four cell four

The supported keywords are similar to those for boxes: source, target, anchor, orientatic
dimensions can be prefixed by add and reset wipes all. Here is another example:

\halign {
\hss
\ignorespaces \alignmark \removeunwantedspaces
\hss
\quad \aligntab \quad
\hss
\ignorespaces \alignmark \removeunwantedspaces
\hss
\cr
\noalign xmove 40pt {}
{\darkred cell one} \aligntab {\darkgray cell one} \cr
{\darkgreen cell one} \aligntab {\darkblue cell one} \cr
\noalign xmove 20pt {}
{\darkred cell two} \aligntab {\darkgray cell two} \cr
{\darkgreen cell two} \aligntab {\darkblue cell two} \cr
\noalign xmove 40pt {}
{\darkred cell three} \aligntab {\darkgray cell three} \cr
{\darkgreen cell three} \aligntab {\darkblue cell three} \cr
\noalign xmove 20pt {}
{\darkred cell four} \aligntab {\darkgray cell four} \cr
{\darkgreen cell four} \aligntab {\darkblue cell four} \cr

Rows

220

Jo cell one cell one
lcell one . cell one
o cell two cell two
Jcell two cell two |

. cell three cell three
Jcell three cell three |

o cell four cell four

. cell four cell four

Some more features might be added in the future as is it an interesting playground. It
is to be seen how this ends up in ConTgXt high level interfaces like tabulate.

12.8 Templates

The \omit command signals that the template should not be applied. But what if we
actually want something at the left and right of the content? Here is how it's done:

\tabskipl0pt \showboxes

\halign\bgroup
[\hss\aligncontent\hss]\aligntab
[\hss\aligncontent\hss]\aligntab
[\hss\aligncontent\hss]\cr

x\aligntab x\aligntab x\cr

xx\aligntab xx\aligntab xx\cr

xxx\aligntab xxx\aligntab xxx\cr

\omit oo\aligntab\omit oo\aligntab\omit oo\cr

xx\aligntab\realign{\hss(}{)\hss}xx\aligntab xx\cr
\realign{\hss(}{)\hss}xx\aligntab xx\aligntab xx\cr

\egroup

The \realign command is like an omit but it expects two token lists that will for
this cell be used instead of the ones from the preamble. While \omit also skips in-
sertion_of \everytab, here it is inserted, just like with normal preambles.

- -H I,,,,X,,,,I ool I,,,,X,,,,I . I,,,,X,,,,I
XX f G XX]] XX

oaxxx] xxx] L I[xxx] |

] G0 [xx]
a0 Ixx]]

It will probably take a while before I'll apply this in ConTgXt because changing existing (sta

Templates

221

12.9 Pitfalls

Alignment have a few properties that can catch you off-guard. One is the use of \everycr._
next example demonstrates that it is also injected after the preamble definition.

\everycr{\noalign{\hrule}}
\halign\bgroup \hsize 5cm \strut \alignmark\cr one\cr two\cr\egroup

This makes sense because it is one way to make sure that for instance a rule gets
the width of the cell.

one

WO

The sam eis of course true for a vertical align:

\everycr{\noalign{\vrule}}
\valign\bgroup \hsize 4cm \strut \aligncontent\cr one\cr two\cr\egroup

We set the width because otherwise the current text width is used.

“|0ne p‘!tWO !

Something similar happens with a \tabskip: the value set before the alignment is
used left of the first cell.

\tabskipl0Opt
\halign\bgroup \tabskip20pt\relax\aligncontent\cr x\cr x\cr \egroup

i X
X

The \tabskip outside the alignment is an internal glue register so you can for instance
use the prefix \global. However, in a preamble it is more a directive: the given value

is stored with the cell. This means that the next code is invalid:

\tabskiplOpt
\halign\bgroup \global\tabskip20pt\relax\aligncontent\cr x\cr x\cr \egroup

The parser looks at tokens in the preamble, sees the \global and appends it to the
current pre-part of the cell's template. Then it sees a \tabskip and assigns the value
after it to the cell's skip. The token and its value just disappear, they are not appended
to _the template. Now, when the template is injected (and interpreted) this \global ex-
pects a variable next and in our case the x doesn't qualify. The next snippet however
works okay:

Pitfalls

222

\scratchcounter0
\halign\bgroup
\global\tabskip40pt\relax\advance\scratchcounter\plusone\aligncontent
\cr
x:\the\scratchcounter\cr
x:\the\scratchcounter\cr
x:\the\scratchcounter\cr
\egroup

Here the \global is applied to the advance because the skip definition is not in the pream!

x:1
X:2
x:3

Here is a variant:

\scratchcounter0

\halign\bgroup
\global\tabskipl0Opt\relax\aligncontent\cr
\advance\scratchcounter\plusone x:\the\scratchcounter\cr
\advance\scratchcounter\plusone x:\the\scratchcounter\cr
\advance\scratchcounter\plusone x:\the\scratchcounter\cr

\egroup

Again the \global stays and this time if ends up before the content which starts with
an \advance._

x:1

x:2

x:3

Normally you will not need the next trickery but it shows that cells are grouped:

\halign\bgroup\aligncontent\cr
1\atendofgrouped{A}\atendofgrouped{B}\cr
2\aftergrouped {A}\aftergrouped {B}\cr
3 \cr

\egroup

Maybe at some point I'll add something a bit more tuned for dealing with cells, but
here is what you get with the above:

1AB

2

Pitfalls

223

AB3_

12.10 Remark

It can be that the way alignments are interfaced with respect to attributes is a bit
different between LuaTgX and LuaMetaTEX but because the former is frozen (in order not tc
TeXt LMTX.

In principle we can have hooks into the rows for pre and post material but it doesn't
really pay of as grouping will still interfere. So for now I decided not to add these.

12.10 Colofon

Author Hans Hagen

ConTgXt 2025.02.19 14:35
LuaMetaTgX 2.11.07 ‘ 20250219
Support www.pragma-ade.com

contextgarden.net
ntg-context@ntg.nl

Remark

224

13 Marks

low level

1EX

marks

22

225

Contents

13.1 Introduction 225
13.2 The basics 225
13.3 Migration 226
13.4 Tracing 229
13.5 High level commands 230
13.6 Pitfalls 232

13.1 Introduction

Marks are one of the subsystems of TgX, as are for instance alignments and math as well a

In MKII marks are used to keep track of colors, transparencies and more properties

that work across page boundaries. It permits picking up at the top of a page from

where one left at the bottom of the preceding one. When MKII was written there

was only one mark so on top of that a multiple mark mechanism was implemented

that filtered specific marks from a collection. Later, ¢-TgX provided mark classes so that me

But, marks have some nasty limitations, so from the ConTgXt perspective there always was
TEX engine has a \clearmarks primitive but that works global. In LuaMetaTgX a proper mas

In MKIV the engine's marks were not used at all and an alternative mechanism was_
written using Lua. It actually is one of the older MkIV features. It doesn't have the
side effects that native marks have but it comes at the price of more overhead, al-
though that is bearable.

In this document we discuss marks but assume that LuaMetaTgX is used with Con-
TEXt LMTX. There we experiment with using the native marks, complemented by a few Lua

13.2 The basics

Although the original TgX primitives are there, the plural ¢-TgX mark commands are to be u

\marks0{This is mark 0} % equivalent to: \mark{This is mark 0}
\marks4{This is mark 4}

This is probably true for most LuaTgX and LuaMetaTgX extensions, maybe example usage create retrospec-
tive demand. But one reason for picking up on engine development is that in the ConTgXt perspective we
actually had some demands.

Introduction

226

When a page has been split off, you can (normally this only makes sense in the out-
put routine) access marks with:

\topmarks 4
\firstmarks4
\botmarks 4

A ‘top’ mark is the last one on the previous page(s), the ‘first’ and ‘bottom’ refer

to the current page. A mark is a so called node, something that ends up in the cur-

rent list and the token list is stored with it. The accessors are just commands and

they fetch the token list from a separately managed storage. When you set or access_

a mark that has not yet been used, the storage is bumped to the right size, so it

doesn't make sense to use e.g. \marks 999 when there are no 998 ones too: it not_

only takes memory, it also makes TgX run over all these mark stores when synchronization !

\newmarks\MyMark

Currently the first 16 marks are skipped so this makes \MyMark become mark 17. The
reason is that we want to make sure that users who experiment with marks have
some_scratch marks available and don't overload system defined ones. Future versions
of ConTgXt might become more restrictive.

Marks can be cleared with:
\clearmarks 4

which clears the storage that keeps the top, first and bot marks. This happens im-
mediately. You can delay this by putting a signal in the list:

\flushmarks 4

This (LuaMetaTgX) feature makes it for instance easy to reset marks that keep track of sect
TEXt always had that.

The current, latest assigned, value of a mark is available too:

\currentmarks 4

Using this value in for instance headers and footers makes no sense because the last
node set can be on a following page.

13.3 Migration

In the introduction we mentioned that LuaMetaTgX has migration built in. In MKIV we have

Migration

227

Migrated marks end up in the postmigrated sublist of a box. In other lowlevel man-
uals we discuss these pre- and postmigrated sublists. As example we use this defi-
nition:

\setbox0\vbox\bgroup

test \marks 4 {mark 4.1}\par
test \marks 4 {mark 4.1}\par
test \marks 4 {mark 4.1}\par
\egroup

When we turn migration on (officially the second bit):
\automigrationmode"FF \showbox0

we_get this:

> \box0=

2:4: \vbox[normal][...], width 483.69687, height 63.43475, depth 0.15576, direction 12r

2:4: .\list

2:4: ..\hbox[line][...], width 483.69687, height 7.48193, depth 0.15576, glue 459.20468fil, direction 12r

2:4: ...\list

2:4:\glue[left hangl[...] 0.0pt

2:4:\glue[left][...] 0.0pt

2:4:\glue[parfillleft][...] 0.0pt

2:4:\par[newgraf][...], hangafter 1, hsize 483.69687, pretolerance 100, tolerance 200, adjdemerits 10000, linepenalty 10, doublehyphendemerits 10000,
finalhyphendemerits 5000, clubpenalty 2000, widowpenalty 2000, brokenpenalty 100, parfillskip 0.0pt plus 1.0fil, hyphenationmode 499519

2:4:\glue[indent][...] 0.0pt

2:4:\glyph[32768][...], language hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000074 t

2:4:\glyph[32768][...], language hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000065 e

2:4:\glyph[32768][...], language hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000073 s

2:4:\glyph[32768][...], language (n=1,1=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000074 t

2:4: ..\glue[space][...] 3.49658pt plus 1.74829pt minus 1.16553pt, font 8

2:4:\penalty[line][...] 10000

2:4:\glue[parfill][...] 0.0pt plus 1.0fil

2:4:\glue[right][...] 0.0pt

2:4:\glue[right hang][...] ©.0pt

2:4: ..\glue[par][...] 11.98988pt plus 3.99663pt minus 3.99663pt

2:4: ..\glue[baseline][...] 8.34883pt

2:4: ..\hbox[line][...], width 483.69687, height 7.48193, depth 0.15576, glue 459.20468fil, direction 12r

2:4: ...\list

2:4:\glue[left hang][...] 0.0pt

2:4:\glue[left][...] ©.0pt

2:4:\glue[parfillleft][...] 0.0pt

2:4:\par[newgraf][...], hangafter 1, hsize 483.69687, pretolerance 100, tolerance 200, adjdemerits 10000, linepenalty 10, doublehyphendemerits 10000,
finalhyphendemerits 5000, clubpenalty 2000, widowpenalty 2000, brokenpenalty 100, parfillskip 0.0pt plus 1.0fil, hyphenationmode 499519

2:4:\glue[indent][...] 0.06pt

2:4:\glyph[32768][...], language (n=1,1=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000074 t

2:4:\glyph[32768][...], language (n=1,1=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000065 e

2:4:\glyph[32768][...], language (n=1,1=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000073 s

2:4:\glyph[32768][...], language (n=1,1=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000074 t

2:4: ..\glue[space][...] 3.49658pt plus 1.74829pt minus 1.16553pt, font 8

2:4:\penalty[line][...] 10000

2:4:\glue[parfill][...] 0.06pt plus 1.0fil

2:4:\glue[right][...] 0.0pt

2:4:\glue[right hang][...] 0.0pt

2:4: ..\glue[par][...] 11.98988pt plus 3.99663pt minus 3.99663pt

2:4: ..\glue[baseline][...] 8.34883pt

2:4: ..\hbox[line][...], width 483.69687, height 7.48193, depth 0.15576, glue 459.20468fil, direction 12r

2:4: ...\list

2:4:\glue[left hang][...] 0.0pt

2:4:\glue[left][...] 0.0pt

2:4:\glue[parfillleft][...] 0.0pt

2:4:\par[newgraf][...], hangafter 1, hsize 483.69687, pretolerance 100, tolerance 200, adjdemerits 10000, linepenalty 10, doublehyphendemerits 10000,
finalhyphendemerits 5000, clubpenalty 2000, widowpenalty 2000, brokenpenalty 100, parfillskip 0.0pt plus 1.0fil, hyphenationmode 499519

2:4:\glue[indent][...] ©.06pt

2:4: ..\glyph[32768][...], language (n=1,1=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000074 t

2:4:\glyph[32768][...], language (n=1,1= =3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000065 e

2:4:\glyph[32768][...], language (n=1,1= =3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000073 s

2:4: ..\glyph[32768][...], language (n=1,1=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000074 t

2:4: ..\glue[space][...] 3.49658pt plus 1.74829pt minus 1.16553pt, font 8

2:4:\penalty[line][...] 10000

2:4:\glue[parfill][...] 0.06pt plus 1.06fil

2:4 ...\glue[right][...] 0.0pt

2:4: ..\glue[right hang][...] 0.0pt

Migration

228

:4: .\postmigrated
..\mark[4][...]
..{mark 4.1}
..\mark[4][...]
..{mark 4.1}
.\mark[4][...]
..{mark 4.1}

NNNNNNN

When we don't migrate, enforced with:
\automigrationmode"00 \showhox0

the result is:

> \box0=

2:4: \vbox[normal][...], width 483.69687, height 63.43475, depth 0.15576, direction 12r

2: Alist

2: ..\hbox[line][...], width 483.69687, height 7.48193, depth 0.15576, glue 459.20468fil, direction 12r

2: Alist

2: ..\glue[left hang]l[...] 0.0pt

2: .. \glue[left][...] 0.0pt

2: ..\glue[parfillleft][...] 0.0pt

2:4:\par[newgraf][...], hangafter 1, hsize 483.69687, pretolerance 100, tolerance 200, adjdemerits 10000, linepenalty 10, doublehyphendemerits 10000,
finalhyphendemerits 5000, clubpenalty 2000, widowpenalty 2000, brokenpenalty 100, parfillskip 0.0pt plus 1.0fil, hyphenationmode 499519

2:4: ..\glue[indent][...] 0.0pt

2: ..\glyph[32768][...], language (n=1,1=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000074 t

2: ..\glyph[32768][...], language (n=1,1=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000065 e

2: ..\glyph[32768][...], language (n=1,1=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000073 s

2: ..\glyph[32768][...], language (n=1,1=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000074 t

2: ..\glue[space][...] 3.49658pt plus 1.74829pt minus 1.16553pt, font 8

2: ..\penalty[line][...] 10000

2: ..\glue[parfill][...] 0.0pt plus 1.0fil

2: ..\glue[right][...] 0.0pt

2: ..\glue[right hang][...] 0.0pt

2:4: ..\mark[4][...]

2:4: ..{mark 4.1}

2:4: ..\glue[par][...] 11.98988pt plus 3.99663pt minus 3.99663pt

2:4: ..\glue[baseline][...] 8.34883pt

2:4: ..\hbox[line][...], width 483.69687, height 7.48193, depth 0.15576, glue 459.20468fil, direction 12r

2:4: ...\list

2:4:\glue[left hang][...] 0.0pt

2:4:\glue[left][...] 0.0pt

2:4:\glue[parfillleft][...] 0.0pt

2:4:\par[newgraf][...], hangafter 1, hsize 483.69687, pretolerance 100, tolerance 200, adjdemerits 10000, linepenalty 10, doublehyphendemerits 10000,
finalhyphendemerits 5000, clubpenalty 2000, widowpenalty 2000, brokenpenalty 100, parfillskip 0.0pt plus 1.0fil, hyphenationmode 499519

2:4:\glue[indent][...] 0.0pt

2:4:\glyph[32768][...], language (n=1,1=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000074 t

2:4:\glyph[32768][...], language (n=1,1=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000065 e

2:4:\glyph[32768][...], language (n=1,1=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000073 s

2:4: ..\glyph[32768][...], language (n=1,1=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000074 t

2:4: ..\glue[space][...] 3.49658pt plus 1.74829pt minus 1.16553pt, font 8

2:4:\penalty[line][...] 10000

2:4: .. \glue[parfill][...] 0.0pt plus 1.0fil

2:4:\glue[right][...] 0.0pt

2:4:\glue[right hang][...] 0.0pt

2:4: ..\mark[4][...]

2:4: ..{mark 4.1}

2:4: ..\glue[par][...] 11.98988pt plus 3.99663pt minus 3.99663pt

2:4: ..\glue[baseline][...] 8.34883pt

2:4: ..\hbox[line][...], width 483.69687, height 7.48193, depth 0.15576, glue 459.20468fil, direction 12r

2:4: ...\list

2:4:\glue[left hang][...] 0.0pt

2:4:\glue[left][...] 0.0pt

2:\glue[parfillleft][...] 0.0pt

2:4:\par[newgraf][...], hangafter 1, hsize 483.69687, pretolerance 100, tolerance 200, adjdemerits 10000, linepenalty 10, doublehyphendemerits 10000,
finalhyphendemerits 5000, clubpenalty 2000, widowpenalty 2000, brokenpenalty 100, parfillskip 0.0pt plus 1.0fil, hyphenationmode 499519

2:4:\glue[indent][...] 0.0pt

2: ...\glyph[32768][...], language (n=1,1=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000074 t

2: ...\glyph[32768][...], language ,1=2,r=3), hyphenationmode "79F3F, options "8@, font <8: DejaVuSerif @ 11.0pt>, glyph U+000065 e

2: ...\glyph[32768][...], language), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000073 s

2: ..\glyph[32768][...], language (n=1,1=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000074 t

2: ...\glue[spacel[...] 3.49658pt plus 1.74829pt minus 1.16553pt, font 8

2: ...\penalty[line][...] 10000

2: ...\glue[parfill][...] 0.0pt plus 1.0fil

2: ...\glue[right][...] 0.0pt

2:\glue[right hang][...] 0.0pt

2: ..\mark[4][...]

2: ..{mark 4.1}

When you say \showmakeup or in this case \showmakeup[mark] the marks are visu-
alized:

Migration

229

test kest
test kest
test test

enabled disabled

Here sm means ‘set mark’ while rm would indicate a ‘reset mark’. Of course migrated
marks don't show up because these are bound to the box and thereby have become
a_a specific box property as can be seen in the above trace._

13.4 Tracing
The LuaMetaTgX engine has a dedicated tracing option for marks. The fact that the traditio:

\tracingmarksl
\tracingonline?2

When tracing is set to 1 we get a list of marks for the just split of page:

7: <mark class 51, top := bot>

7: ..{sample 9.1}

7: <mark class 51: first := mark>
7: ..{sample 10.1}

:7: <mark class 51: bot := mark>
7: ..{sample 10.1}

7: <mark class 51, page state>

7: ..top {sample 9.1}

7: ..first {sample 10.1}

7: ..bot {sample 10.1}

N N NDNDNDNDNDNDNNDN

When tracing is set to 2 you also get details we get a list of marks of the analysis:

1:9: <mark class 51, top := bot>
1:9: ..{sample 5.1}

1:9: <mark class 51: first := mark>
1:9: ..{sample 6.1}

1:9: <mark class 51: bot := mark>
1:9: ..{sample 6.1}

1:9: <mark class 51: bot := mark>
1:9: ..{sample 7.1}

1:9: <mark class 51: bot := mark>
1:9

..{sample 8.1}

Tracing

230

: <mark class 51: bot := mark>
..{sample 9.1}

: <mark class 51, page state>
..top {sample 5.1}

..first {sample 6.1}

..bot {sample 9.1}

N
O O © © O O

13.5 High level commands

I think that not that many users define their own marks. They are useful for show-
ing section related titles in headers and footers but the implementation of that is
hidden. The native mark references are top, first and bottom but in the ConIgXt interface

ConIgXt TgX column page

previous top last before sync last on previous page
top first first in sync first on page

bottom bot lastin sync last on page

first top first not top in sync first on page

last bot last not bottom in sync last on page

default the same as first

current the last set value

In order to separate marks in ConTgXt from those in TgX, the term ‘marking’ is used. In_
MKIV the regular marks mechanism is of course there but, as mentioned, not used. By
using a different namespace we could make the transition from MKII to MkIV (the

same is true for some more mechanisms).

A marking is defined with
\definemarking[MyMark]
A defined marking can be set with two equivalent commands:

\setmarking[MyMark]{content}
\marking [MyMark] {content}

The content is not typeset but stored as token list. In the sectioning mechanism that
uses markings we don't even store titles, we store a reference to a title. In order_

to use that (deep down) we hook in a filter command. By default that command does_
nothing:

High level commands

231

\setupmarking[MyMark] [filtercommand=\firstofoneargument]

The token list does not get expanded by default, unless you set it up:
\setupmarking[MyMark] [expansion=yes]

The current state of a marking can be cleared with:
\clearmarking[MyMark]

but because that en is not synchronized the real deal is:
\resetmarking[MyMark]

Be aware that it introduces a node in the list. You can test if a marking is defined
with (as usual) a test macro. Contrary to (most) other test macros this one is fully
expandable:

\doifelsemarking {MyMark} {
defined
} Ao

undefined

}

Because there can be a chain involved, we can relate markings. Think of sections
below chapters and subsections below sections:

\relatemarking[MyMark][YourMark]

When a marking is set its relatives are also reset, so setting YourMark will reset MyMark. It
is this kind of features that made for marks being wrapped into high level commands

very early in the ConTgXt development (and one can even argue that this is why a package
TEXt exists in the first place).

The rest of the (relatively small) repertoire of commands has to do with fetching mark-
ings. The general command is \getmarking that takes two or three arguments:

\getmarking[MyMarking] [first]
\getmarking[MyMarking] [page] [first]
\getmarking[MyMarking] [page] [first]
\getmarking[MyMarking][column:1][first]

There are (normally) three marks that can be fetched so we have three commands
that do just that:

High level commands

232

\fetchonemark [MyMarking][which one]
\fetchtwomarks[MyMarking]
\fetchallmarks[MyMarking]

You can setup a separator key which by default is:
\setupmarking[MyMarking] [separator=\space\emdash\space]
Injection is enabled by default due to this default:
\setupmarking[MyMarking] [state=start]

The following three variants are (what is called) fully expandable:

\fetchonemarking [MyMarking][which one]
\fetchtwomarkings[MyMarking]
\fetchallmarkings[MyMarking]

13.6 Pitfalls

The main pitfall is that a (re)setting a mark will inject a node which in vertical mode
can interfere with spacing. In for instance section commands we wrap them with the
title so there it should work out okay.

13.6 Colofon

Author Hans Hagen

ConTgXt 2025.02.19 14:35
LuaMetaTgX 2.11.07 ‘ 20250219
Support www.pragma-ade.com

contextgarden.net
ntg-context@ntg.nl

Pitfalls

233

14 Inserts

low level

1EX

Inserts

234

Contents

14.1 Introduction 234
14.2 The page builder 234
14.3 Inserts 236
14.4 Storing 237
14.5 Synchronizing 237
14.6 Migration 237
14.7 Callbacks 237

14.1 Introduction

This document is a mixed bag. We do discuss_inserts but also touch elements of the

page builder because inserts and regular page content are handled there. Examples

of mechanisms that use inserts are footnotes. These have an anchor in the running

text and some content that ends up (normally) at the bottom of the page. When con-
sidering a page break the engine tries to make sure that the anchor (reference) and

the content end up on the same page. When there is too much, it will distribute (split) the_
content over pages.

We can discuss page breaks in a (pseudo) scientific way and explore how to optimize

this process, taking into accounts also inserts that contain images but it doesn't make
much sense to do that because in practice we can encounter all kind of interferences. The-
ory and practice are too different because a document can contain a wild mix of text, fig-
ures, formulas, notes, have backgrounds and location dependent processing. It get

seven more complex when we are dealing with columns because TgX doesn't really know th

I will therefore stick to some practical aspects and the main reason for this document
is that I sort of document engine features and at the same time give an impression
of what we deal with. I will do that in the perspective of LuaMetaTgX, which has a few mo:

Currently this document is mostly for myself to keep track of the state of inserts and
the page builder in LuaMetaTgX and ConTgXt LMTX. The text is not yet corrected and can |

14.2 The page builder

When your document is processed content eventually gets added to the so called main
vertical list (mvl). Content first get appended to the list of contributions and at spe-
cific moments it will be handed over to the mvl. This process is called page build-

ing. There we can _encounter the following elements (nodes):

Introduction

235

glue a vertical skip

penalty a vertical penalty

kern a vertical kern

vlist a a vertical box

hlist a horizontal box (often a line)
rule a horizontal rule

boundary a boundary node

whatsit a node that is used by user code (often some extension)
mark a token list (as used for running headers)

insert a node list (as used for notes)

The engine itself will not insert anything other than this but Lua code can mess up
the contribution list and the mvl and that can trigger an error. Handing over the con-
tributions is done by the page builder and that one kicks in in several places:

* When a penalty gets inserted it is part of evaluating if the output routine should
be triggered. This triggering can be enforced by values equal or below 10.000 that
then can be checked in the set routine.
* The builder is not exercised when a glue or kern is injected so there can be multiple of
* Adding a box triggers the builder as does the result of an alignment which can
be a list of boxes.
* When the output routine is finished the builder is executed because the routine
can _have pushed back content.
* When a new paragraph is triggered by the \par command the builder kicks in
but only when the engine was able to enter vertical mode.
* When the job is finished the builder will make sure that pending content is han-
dled.
* An insert and vadjust can trigger the builder but only at the nesting level zero which no
* At the beginning of a paragraph (like text), before display math is entered, and
when display math ends the builder is also activated.

At the TgX the builder is triggered automatically in the mentioned cases but at the Lua end

The properties that relate to the page look like counter and dimension registers but
they are not. These variables are global and managed differently.

\pagegoal the available space
\pagetotal the accumulated space
\pagestretch the possible zero order stretch

\pagefilstretch the possible one order stretch
\pagefillstretch the possible second order stretch
\pagefilllstretch the possible third order stretch

The page builder

236

\pageshrink the possible shrink
\pagedepth the current page depth
\pagevsize the initial page goal

When the first content is added to an empty page the \pagegoal gets the value of \vsize :
gets frozen but the value is diminished by the space needed by left over inserts. These
inserts are managed via a separate list so they don't interfere with the page that

itself of course can have additional inserts. The \pagevsize is just a (LuaMetaTgX) status ve

Another variable is \deadcycles that registers the number of times the output rou-
tine is called without returning result.

14.3 Inserts
We now come to inserts. In traditional TgX an insert is a data structure that runs on top of

In LuaMetaTgX you can set \insertmode to 1 and that is what we do in ConTgXt. In that m
TEXt MKIV we use the range 127 upto 255 in order to avoid a clash with registers. In LMT.

A consequence of this approach is that we use dedicated commands to set the insert
properties:

\insertdistance glue the space before the first instance (on a page)
\insertmultiplier count a factor that is used to calculate the height used

\insertlimit dimen the maximum amount of space on a page to be taken
\insertpenalty count the floating penalty (used when set)
\insertmaxdepth dimen the maximum split depth (used when set)
\insertstorage count signals that the insert has to be stored for later
\insertheight dimen the accumulated height of the inserts so far
\insertdepth dimen the current depth of the inserts so far

\insertwidth dimen the width of the inserts

These commands take a number and an integer, dimension or glue specification. They

can be set and queried but setting the dimensions can have side effects. The accu-

mulated height of the inserts is available in \insertheights (which can be set too). The \f
able determines the penalty applied when a split is needed.

In the output routine the original TgX variable \insertpenalties is a counter that keeps th

The LuaMetaTgX specific storage mode \insertstoring variable is explained in the next sec

Inserts

237

14.4 Storing

This feature is kind of special and still experimental. When \insertstoring is set

1, all inserts that have their storage flag set will be saved. Think of a multi column
setup where inserts have to end up in the last column. If there are three columns, the
first two will store inserts. Then when the last column is dealt with \insertstoring can
be set to 2 and that will signal the builder that we will inject the inserts. In both

cases, the value of this register will be set to zero so that it doesn't influence fur-

ther processing.

14.5 Synchronizing

The page builder can triggered by (for instance) a penalty but you can also use \pagebound
will trigger the page builder but not leave anything behind. (This is experimental.)

14.6 Migration

Todo, nothing new there, so no hurry.

14.7 Callbacks

Todo, nothing new there, so no_hurry.

14.7 Colofon

Author Hans Hagen

ConTgXt 2025.02.19 14:35
LuaMetaTgX 2.11.07 ‘ 20250219
Support www.pragma-ade.com

contextgarden.net
ntg-context@ntg.nl

Storing

238

15 Localboxes

low level

1EX

localboxes

239

Contents

15.1 Introduction 239
15.2 The basics 239
15.3 The interface 242
15.4 The helpers 247

15.1 Introduction

The LuaTgX engine inherited a few features from other engines and adding local boxes to p
MetaTgX specific \localmiddlebox primitives. WHen these primitives are used in vertical m

The original (Omega) idea was _that local boxes are used for repetitive punctuation
(like quotes) at the left and/or right end of the lines that make up a paragraph. That
means that when these primitives inject nodes they actually introduce states so that
a stretch of text can be marked.

When this mechanism was cleaned up in LuaMetaTgX I decided to investigate if other usage
MetaTgX is not compatible with LuaTgX.

This is a preliminary, uncorrected manual.

15.2 The basics

This mechanism uses a mix of setting (pseudo horizontal) box registers that get as-

sociated with (positions in a) paragraph. When the lines resulting from breaking the

list gets packaged into an horizontal (line) box, the local left and right boxes get prepended
and appended to the textual part (inside the left, right and parfills kips and left or

right hanging margins). When assigning the current local boxes to the paragraph node(s) re
erences to the pseudo registers are used and the packaging actually copies them. This

mix of referencing and copying is somewhat tricky but the engine does it best to hide

this for the user.

This mechanism is rather useless when not wrapped into some high level mechanism
because by default setting these boxes wipes the existing value. In LuaMetaTgX you can act
TeX, in LuaMetaTgX the local box registers have a linked lists of local boxes tagged by inde
TEX here because there we don't have access. This is why usage as in LuaTgX will also wor
MetaTgX.

This mechanism obeys grouping as is demonstrated in the next three examples. The
first example is:

Introduction

240

\start
\dorecurse{10}{test #1.1 }
\localleftbox{\blackrule[width=2em,color=darkred] }
\dorecurse{20}{test #1.2 }
\removeunwantedspaces
\localrightbox{ \blackrule[width=3em, color=darkblue]}
\dorecurse{20}{test #1.3 }

\stop
\dorecurse{20}{test #1.4 }
% par ends here

The next example differs in a subtle way: watch the keep keyword, it makes the set-
ting retain after the group ends.

\start
\start
\dorecurse{10}{test #1.1 }
\localleftbox keep {\blackrule[width=2em,color=darkred] }
\dorecurse{20}{test #1.2 }
\removeunwantedspaces
\localrightbox { \blackrule[width=3em,color=darkbluel]}
\dorecurse{20}{test #1.3 }
\stop
\dorecurse{20}{test #1.4 }
\stop
% par ends here

The third example has two times keep. This option is LuaMetaTgX specific.

\start
\start
\dorecurse{10}{test #1.1 }
\localleftbox keep {\blackrule[width=2em,color=darkred] }
\dorecurse{20}{test #1.2 }
\removeunwantedspaces
\localrightbox keep { \blackrule[width=3em,color=darkblue]}
\dorecurse{20}{test #1.3 }
\stop
\dorecurse{20}{test #1.4 }
\stop
% par ends here

The basics

241

test 1.1 test 2.1 test 3.1 test 4.1 test 5.1 test 6.1 test 7.1 test 8.1 test 9.1 test 10.1 test
mmm 1.2 test 2.2 test 3.2 test 4.2 test 5.2 test 6.2 test 7.2 test 8.2 test 9.2 test 10.2 test
mmm 11.2 test 12.2 test 13.2 test 14.2 test 15.2 test 16.2 test 17.2 test 18.2 test 19.2
mmm test 20.2 test 1.3 test 2.3 test 3.3 test 4.3 test 5.3 test 6.3 test 7.3 test 8.3 m——
mmm test 9.3 test 10.3 test 11.3 test 12.3 test 13.3 test 14.3 test 15.3 test 16.3 m—
mmm test 17.3 test 18.3 test 19.3 test 20.3 test 1.4 test 2.4 test 3.4 test 4.4 test 5.4 test
6.4 test 7.4 test 8.4 test 9.4 test 10.4 test 11.4 test 12.4 test 13.4 test 14.4 test 15.4 test
16.4 test 17.4 test 18.4 test 19.4 test 20.4

Example 1

test 1.1 test 2.1 test 3.1 test 4.1 test 5.1 test 6.1 test 7.1 test 8.1 test 9.1 test 10.1 test
mmm 1.2 test 2.2 test 3.2 test 4.2 test 5.2 test 6.2 test 7.2 test 8.2 test 9.2 test 10.2 test
mmm 11.2 test 12.2 test 13.2 test 14.2 test 15.2 test 16.2 test 17.2 test 18.2 test 19.2
mmm test 20.2 test 1.3 test 2.3 test 3.3 test 4.3 test 5.3 test 6.3 test 7.3 test 8.3 m——
mmm test 9.3 test 10.3 test 11.3 test 12.3 test 13.3 test 14.3 test 15.3 test 16.3
mmm test 17.3 test 18.3 test 19.3 test 20.3 test 1.4 test 2.4 test 3.4 test 4.4 test 5.4 test
6.4 test 7.4 test 8.4 test 9.4 test 10.4 test 11.4 test 12.4 test 13.4 test 14.4 test 15.4 test
16.4 test 17.4 test 18.4 test 19.4 test 20.4

Example 2

test 1.1 test 2.1 test 3.1 test 4.1 test 5.1 test 6.1 test 7.1 test 8.1 test 9.1 test 10.1 test
mmm 1.2 test 2.2 test 3.2 test 4.2 test 5.2 test 6.2 test 7.2 test 8.2 test 9.2 test 10.2 test
mmm 11.2 test 12.2 test 13.2 test 14.2 test 15.2 test 16.2 test 17.2 test 18.2 test 19.2 test
mmm 20.2 test 1.3 test 2.3 test 3.3 test 4.3 test 5.3 test 6.3 test 7.3 test 8.3 test
mmm 9.3 test 10.3 test 11.3 test 12.3 test 13.3 test 14.3 test 15.3 test 16.3 test m—
mmm 17.3 test 18.3 test 19.3 test 20.3 test 1.4 test 2.4 test 3.4 test 4.4 test 5.4 m—
mmm test 6.4 test 7.4 test 8.4 test 9.4 test 10.4 test 11.4 test 12.4 test 13.4 test
mmm 14.4 test 15.4 test 16.4 test 17.4 test 18.4 test 19.4 test 20.4

Example 3
Figure 15.1

One (nasty) side effect is that when you set these boxes ungrouped they are applied
to whatever follows, which is why resetting them is built in the relevant parts of Con-
TEXt. The next examples are typeset grouped an demonstrate the use of indices:

\dorecurse{20}{before #1 }
\localleftbox{\bf \darkred L
\localleftbox{\bf \darkred L
\dorecurse{20}{after #1 }

N =

The basics

242

before 1 before 2 before 3 before 4 before 5 before 6 before 7 before 8 before 9 be-
fore 10 before 11 before 12 before 13 before 14 before 15 before 16 before 17 be-
fore 18 before 19 before 20 after 1 after 2 after 3 after 4 after 5 after 6 after 7 after 8 a

Indices can be set for both sides:

\dorecurse{5}{\localrightbox index #1{ \bf \darkgreen R #1}}%
\dorecurse{20}{before #1 }

\dorecurse{5}{\localleftbox index #1{\bf \darkred L #1 }}%
\dorecurse{20}{after #1 }

before 1 before 2 before 3 before 4 before 5 before 6 before R 1 R2 R 3 R4 R 5

1 9_before_2 O_after_1_after_2_after_3_after_4_after_5_after_6_after_7_after_8_after_9_after_1 0

We can instruct this mechanism to hook the local box into the main par node by us-
ing the par keyword. Keep in mind that these local boxes only come into play when
the lines are broken, so till then changing them is possible.

\dorecurse{3}{\localrightbox index #1{ \bf \darkgreen R #1}}%
\dorecurse{20}{before #1 }
\dorecurse{2}{\localleftbox par index #1{\bf \darkred L #1 }}%
\dorecurse{20}{after #1 }

L 1 I 2 before 1 before 2 before 3 before 4 before 5 before 6 before 7 be- R 1 R 2 R 3

15.3 The interface

The interface described here is experimental.
Because it is hard to foresee if this mechanism will be used at all the ConTEXt interface is

\definelocalboxes

[lefttext]

[location=1lefttext,width=3em, color=darkblue]
\definelocalboxes

The interface

243

[lefttextx]
[Location=lefttext,width=3em, color=darkblue]

\definelocalboxes

[righttext]

[Location=righttext,width=3em, color=darkyellow]
\definelocalboxes

[righttextx]

[Location=righttext,width=3em, color=darkyellow]

The order of definition matters! Here the x variants have a larger index number. There
can (currently) be at most 256 indices. The defined local boxes are triggered with \localbao

\startnarrower
\dorecurse{20}{before #1 }%
\localbox[lefttext]{[L] }%
\localbox[lefttextx]{[LL] }%
\localbox[righttext]{ [RR]}%
\localbox[righttextx]{ [R]}%
\dorecurse{20}{ after #1}%
\stopnarrower

Watch how we obey the margins:

before 1 before 2 before 3 before 4 before 5 before 6 before 7 before 8 before
9 before 10 before 11 before 12 before 13 before 14 before 15 before 16 be-
fore 17 before 18 before 19 before 20 after 1 after 2 after 3 after 4 after 5 after 6 afte

Here these local boxes have dimensions. The predefined margin variants are virtual. Here
we set up the style and color:

\setuplocalboxes
[leftmargin]
[style=\bs,

color=darkgreen]

\setuplocalboxes
[rightmargin]
[style=\bs,

color=darkred]

\dorecurse{2}{
\dorecurse{10}{some text #1.##1 }%
KEY#1.1%

The interface

L1.2

L22

244

\localmargintext[leftmargin]{L #1.1}%
\localmargintext[rightmargin]{R #1.1}%
\dorecurse{10}{some text #1.##1 }%
KEY#1.2%
\localmargintext[leftmargin]{L #1.2}%
\localmargintext[rightmargin] {R #1.2}%
\dorecurse{10}{some text #1.##1 }%
\blank

}

You can also use leftedge and rightedge but using them here would put them out-
side the page.

some text 1.1 some text 1.2 some text 1.3 some text 1.4 some text 1.5 some text
1.6 some text 1.7 some text 1.8 some text 1.9 some text 1.10 KEY1.1some text 1.1 ®nie2te

some text 2.1 some text 2.2 some text 2.3 some text 2.4 some text 2.5 some text
2.6 some text 2.7 some text 2.8 some text 2.9 some text 2.10 KEY2.1some text 2.1 #R2te

In previous examples you can see that setting something at the left will lag behind
so _deep down we use another trick here: \localmiddlebox. When these boxes get
placed a callback can be triggered and in ConTgXt we use that to move these middle boxes

Next we implement line numbers. Watch out: this will not replace the existing mech-
anisms, it's just an alternative as we have alternative table mechanisms. We have
a repertoire of helpers for constructing the result:

\definelocalboxes
[linenumberleft]
[command=\LeftNumber,

location=middle,
distance=\leftmargindistance,
width=3em,

style=\bs,

color=darkred]

\definelocalboxes
[linenumberright] % [linenumberleft]
[command=\RightNumber,
location=middle,
distance=\rightmargindistance,
width=3em,

The interface

245

style=\bf,
color=darkgreen]

\definecounter[MyLineNumberlL]
\definecounter[MyLineNumberR]

\setupcounter
[MyLineNumberlL]
[numberconversion=characters]

\setupcounter
[MyLineNumberR]
[numberconversion=romannumerals]

\def\LineNumberL
{\incrementcounter[MyLineNumberL]%
\convertedcounter[MyLineNumberL]}

\def\LineNumberR
{\incrementcounter[MyLineNumberR]%
\convertedcounter[MyLineNumberR]}

\protected\def\LeftNumber
{\setbox\localboxcontentbox\hbox
to \localboxesparameter{width}
{(\LineNumberL\hss\strut)}s
\localmarginlefttext\zeropoint}

\protected\def\RightNumber
{\setbox\localboxcontentbox\hbox
to \localboxesparameter{width}
{(\strut\hss\LineNumberR) }%
\localmarginrighttext\zeropoint}

\localbox[linenumberleft]{}%
\localbox[linenumberright]{}%

\dorecurse{2}{
\samplefile{tufte}
\par

}

\resetlocalbox[linenumberleft]%
\resetlocalbox[linenumberright]%

The interface

(15.9
(15.H
(15.9
(15.9
(15.9
(15.9)
(15.9
(15.H

(15.0)
(15.))
(15.%
(15.D
(15.m
(15.n
(15.9
(15.p

(15.9
(15.hH
(15.9
(15.9
(15.9
(15.p
(15.9
(15.H

246

We use our tufte example to illustrate the usage:

We thrive in information-thick worlds because of our marvelous and everyday capac+15.i)
ity to select, edit, single out, structure, highlight, group, pair, merge, harmonize, syn#5.ii)
thesize, focus, organize, condense, reduce, boil down, choose, categorize, catalog, clis-iii)
sify, list, abstract, scan, look into, idealize, isolate, discriminate, distinguish, screen, Pb.iv)
geonhole, pick over, sort, integrate, blend, inspect, filter, lump, skip, smooth, chunk, @%-v)
erage, approximate, cluster, aggregate, outline, summarize, itemize, review, dip into, Iffipi)
through, browse, glance into, leaf through, skim, refine, enumerate, glean, synopsizé© wim)
now_the wheat from the chaff and separate the sheep from the goats. 1J.viii)

We thrive in information-thick worlds because of our marvelous and everyday capaci5.ix)
ity to select, edit, single out, structure, highlight, group, pair, merge, harmonize, synd5.x)
thesize, focus, organize, condense, reduce, boil down, choose, categorize, catalog, cld$.xi)
sify, list, abstract, scan, look into, idealize, isolate, discriminate, distinguish, screen,1fi-xii)
geonhole, pick over, sort, integrate, blend, inspect, filter, lump, skip, smooth, chunld, Jaxiii)
erage, approximate, cluster, aggregate, outline, summarize, itemize, review, dip intol §lgiv)
through, browse, glance into, leaf through, skim, refine, enumerate, glean, synopsizé(Gwiv)
now the wheat from the chaff and separate the sheep from the goats. 1%.xvi)

For convenience we support ranges like this (we've reset the line number counters
here):

\startlocalboxrange[linenumberleft]%
\startlocalboxrange[linenumberright]%
\dorecurse{2}{

\samplefile{tufte}

\par
}
\stoplocalboxrange
\stoplocalboxrange

We thrive in information-thick worlds because of our marvelous and everyday capac<15.i)
ity to select, edit, single out, structure, highlight, group, pair, merge, harmonize, synd5.ii)
thesize, focus, organize, condense, reduce, boil down, choose, categorize, catalog, clis-iii)
sify, list, abstract, scan, look into, idealize, isolate, discriminate, distinguish, screen, Hb.iv)
geonhole, pick over, sort, integrate, blend, inspect, filter, lump, skip, smooth, chunk, @%-v)
erage, approximate, cluster, aggregate, outline, summarize, itemize, review, dip into, Iffipvi)
through, browse, glance into, leaf through, skim, refine, enumerate, glean, synopsizé{6wim)
now the wheat from the chaff and separate the sheep from the goats. 1J.viii)

The interface

(15.9)
15.j)
(15.9
(15.D
(15.1h
(15.19
(15.9
(15.p

247

We thrive in information-thick worlds because of our marvelous and everyday capaci5.ix)
ity to select, edit, single out, structure, highlight, group, pair, merge, harmonize, synd 5.x)
thesize, focus, organize, condense, reduce, boil down, choose, categorize, catalog, cld$.xi)
sify, list, abstract, scan, look into, idealize, isolate, discriminate, distinguish, screen,1fi-xii)
geonhole, pick over, sort, integrate, blend, inspect, filter, lump, skip, smooth, chunld, Jaxiii)
erage, approximate, cluster, aggregate, outline, summarize, itemize, review, dip intol §liiv)
through, browse, glance into, leaf through, skim, refine, enumerate, glean, synopsizd(5wiv)
now_the wheat from the chaff and separate the sheep from the goats. 1%.xvi)

15.4 The helpers

For the moment we have these helpers:

\localboxindex integer
\localboxlinenumber integer
\localboxlinewidthdimension
\localboxlocalwidth dimension
\localboxprogress dimension
\localboxleftoffset dimension
\localboxrightoffset dimension
\localboxleftskip dimension
\localboxrightskip dimension
\localboxlefthang dimension
\localboxrighthang dimension

\localboxindent dimension
\localboxparfillleftskip dimension
\localboxparfillrightskip dimension
\localboxovershoot dimension

The progress and offsets are accumulated values of the normalized indent, hangs, skips
etc. The line number is the position in the paragraph. In the callback we set the box
register \localboxcontentbox and use it after the command has been applied. In_

the line number example you can see how we set its final content, so these boxes

are sort of dynamic. Normally in the middle case no content is passed and in the

par builder a middle is not taken into account when calculating the line width.

The helpers

248

15.4 Colofon

Author Hans Hagen

ConTgXt 2025.02.19 14:35
LuaMetaTgX 2.11.07 ‘ 20250219
Support www.pragma-ade.com

contextgarden.net
ntg-context@ntg.nl

Colofon

249

16 Loops

low level

1EX

loops

250

Contents

16.1 Introduction 250
16.2 Primitives 250
16.3 Wrappers 254
16.4 About quitting 256
16.5 Simple repeaters 256
16.6 Endless loops 256
16.7 Loop variables 256

16.1 Introduction

I have hesitated long before I finally decided to implement native loops in LuaMeta-
TEX. Among the reasons against such a feature is that one can define macros that do loops
MetaTgX it is actually possible to use the local control mechanism to hide loop counter adv:

In the next sections we describe the new native loop primitives in LuaMetaTgX as well as tl
TEXt loop helpers.

16.2 Primitives

Because MetaPost, which is also a macro language, has native loops, it makes sense
to also have native loops in TgX and in LuaMetaTgX it was not that hard to add it. One var

\localcontrolledloop 1 100000 1 {%
% body
}

Here is an example of usage:

\localcontrolledloop 1 5 1 {%
[\number\currentloopiterator]
\localcontrolledloop 1 10 1 {%

(\number\currentloopiterator)
}%
[\number\currentloopiterator]
\par
}

The \currentloopiterator is a numeric token so you need to explicitly serialize it

with \number or \the if you want it to be typeset:

Introduction

251

[1]1_(1)_(2)_(3)_(4)_(5)_(6)_(7)_(8)_(9)_(10)_[1]_
[2]_(1)_(2)_(3)_(4)_(5)_(6)_(7)_(8)_(9)_(10)_[2]_
[31.(1)_(2)_(3)_(4)_(5)_(6)_(7)_(8)_(9)_(10)_[3]_
[4]_(1)_(2)_(3)_(4)_(5)_(6)_(7)_(8)_(9)_(10)_[4]_
[51.(1)_(2)_(3)_(4)_(5)_(6)_(7)_(8)_(9)_(10)_[5]_

Here is another example. This time we also show the current nesting:

\localcontrolledloop 1 100 1 {%
\ifnum\currentloopiterator>6\relax
\quitloop
\else
[\number\currentloopnesting:\number\currentloopiterator]
\localcontrolledloop 1 8 1 {%
(\number\currentloopnesting:\number\currentloopiterator)
F\par
\fi
}

Watch the \quitloop: it will end the loop at the next iteration so any content after it will s

[1:1] (2:1) (2:2) (2:3) (2:4) (2:5) (2:6) (2:7) (2:8)
[1:2] (2:1) (2:2) (2:3) (2:4) (2:5) (2:6) (2:7) (2:8)_
[1:3] (2:1) (2:2) (2:3) (2:4) (2:5) (2:6) (2:7) (2:8)_
[1:4] (2:1) (2:2) (2:3) (2:4) (2:5) (2:6) (2:7) (2:8)
[1:5] (2:1) (2:2) (2:3) (2:4) (2:5) (2:6) (2:7) (2:8)_
[1:6] (2:1) (2:2) (2:3) (2:4) (2:5) (2:6) (2:7) (2:8)

The three loop variants all perform differently:

l:\testfeatureonce {1000} {\localcontrolledloop 1 2000 1 {\relax}} %

\elapsedtime

e:\testfeatureonce {1000} {\expandedloop 1 2000 1 {\relax}} %
\elapsedtime

u:\testfeatureonce {1000} {\unexpandedloop 1 2000 1 {\relax}} %
\elapsedtime

An unexpanded loop is (of course) the fastest because it only collects and then feeds
back the lot. In an expanded loop each cycle does an expansion of the body and col-
lects the result which is then injected afterwards, and the controlled loop just expands
the body each iteration.

1: 0.092

Primitives

252

The different behavior is best illustrated with the following example:

\edef\TestA{\localcontrolledloop 1 5 1 {A}} % out of order
\edef\TestB{\expandedloop 151 {B}}
\edef\TestC{\unexpandedloop 151

We can show the effective definition:

\meaningasis\TestA
\meaningasis\TestB
\meaningasis\TestC

A: \TestA
B: \TestB
C: \TestC

Watch how the first test pushes the content in the main input stream:

AAAAA

\def \TestA {}

\def \TestB {BBBBB}

\def \TestC {C\relax C\relax C\relax C\relax C\relax }

A:
B: BBBBB
C: Ccccc

Here are some examples that show what gets expanded and what not:

\edef\whatever
{\expandedloop 1 10 1
{(\number\currentloopiterator)
\scratchcounter=\number\currentloopiterator\relax}}

\meaningasis\whatever

\def \whatever {(1) \scratchcounter =1\relax (2) \scratchcounter =2\relax
(3) \scratchcounter =3\relax (4) \scratchcounter =4\relax (5) \scratchcounter =5\relax
(6) \scratchcounter =6\relax (7) \scratchcounter =7\relax (8) \scratchcounter =8\relax

(9) \scratchcounter_=9\relax (10) \scratchcounter =10\relax }

Primitives

253

A local control encapsulation hides the assignment:

\edef\whatever
{\expandedloop 1 10 1
{(\number\currentloopiterator)
\beginlocalcontrol
\scratchcounter=\number\currentloopiterator\relax
\endlocalcontrol}}

\meaningasis\whatever

\def_\whatever_{(1)_(2)_(3)_(4)_(5)_(6)_(7)_(8)_(9)_(10)_}

Here we see the assignment being retained but with changing values:

\edef\whatever
{\unexpandedloop 1 10 1
{\scratchcounter=1\relax}}

\meaningasis\whatever

\def \whatever {\scratchcounter =1\relax \scratchcounter =1\relax \scratchcounter_
=1\relax \scratchcounter =1\relax \scratchcounter =1\relax \scratchcounter =1\relax
\scratchcounter =1\relax \scratchcounter =1\relax \scratchcounter =1\relax

\scratchcounter =1\relax }
We get no expansion at all:

\edef\whatever
{\unexpandedloop 1 10 1
{\scratchcounter=\the\currentloopiterator\relax}}

\meaningasis\whatever

\def \whatever {\scratchcounter =0\relax \scratchcounter =0\relax \scratchcounter_
=0\relax \scratchcounter =0\relax \scratchcounter =0\relax \scratchcounter =0\relax
\scratchcounter =0\relax \scratchcounter =0\relax \scratchcounter =0\relax

\scratchcounter =0\relax }
And here we have a mix:

\edef\whatever
{\expandedloop 1 10 1
{\scratchcounter=\the\currentloopiterator\relax}}

Primitives

254

\meaningasis\whatever

\def_\whatever_{\scratchcounter_=1\relax_\scratchcounter_=2\relax_\scratchcounter_
=3\relax \scratchcounter =4\relax \scratchcounter =5\relax \scratchcounter =6\relax
\scratchcounter =7\relax \scratchcounter =8\relax \scratchcounter =9\relax

\scratchcounter =10\relax }

There is one feature worth noting. When you feed three numbers in a row, like here, there
is a_danger of them being seen as one:

\expandedloop
\number\dimexprlpt
\number\dimexpr2pt
\number\dimexprlpt

{}

This gives an error because a too large number is seen. Therefore, these loops per-
mit leading equal signs, as in assignments (we could support keywords but it doesn't
make much sense):

\expandedloop =\number\dimexprlpt =\number\dimexpr2pt =\number\dimexprlpt{}

16.3 Wrappers

We always had loop helpers in ConTgXt and the question is: “What we will gain when
we replace the definitions with ones using the above?”. The answer is: “We have lit-
tle performance but not as much as one expects!”. This has to do with the fact that
we_support #1 as iterator and #2 as (verbose) nesting values and that comes with
some overhead. It is also the reason why these loop macros are protected (unexpand-

able). However, using the primitives might look somewhat more natural in low level
TEX code.

Also, replacing their definitions can have side effects because the primitives are (and _
will be) still experimental so it's typically a patch that I will run on my machine for
a while.

Here is an example of two loops. The inner state variables have one hash, the outer
one extra:

\dorecurse{2}{
\dostepwiserecurse{1}{10}{2}{
(#1:#2) [##1:44#2]

Wrappers

255

H\par
}

We get this:

(1:1) [1:2] (1:1) [3:2] (1:1) [5:2] (1:1) [7:2] (1:1) [9:2]
(2:1) [1:2] (2:1) [3:2] (2:1) [5:2] (2:1) [7:2] (2:1) [9:2]

We can also use two state macro but here we would have to store the outer ones:

\dorecurse {2} {
/\recursedepth:\recurselevel/
\dostepwiserecurse {1} {10} {2} {

<\recursedepth:\recurselevel>

Y\par
}

That gives us:

/1:1/ <2:1> <2:3> <2:5> <2:7> <2:9>
/1:2] <2:1> <2:3> <2:5> <2:7> <2:9>

An endless loop works as follows:

\doloop {
\ifsomeconditionismet

\exitloop
\else

\fi
% \exitloopnow

}

Because of the way we quit there will not be a new implementation in terms of the
loop primitives. You need to make sure that you don't leave in the middle of an on-
going condition. The second exit is immediate.

We also have a (simple) expanded variant:

\edef\TestX{\doexpandedrecurse{10}{!}} \meaningasis\TestX

Wrappers

256

This helper can be implemented in terms of the loop primitives which makes them
a bit faster, but these are not critical:

A variant that supports #1 is the following:
\edef\TestX{\doexpandedrecursed{10}{#1}} \meaningasis\TestX
So:

\def \TestX {12345678910}

16.4 About quitting

You can quit a local and expanded loop at the next iteration using \quitloop. With
\quitloopnow you immediately leave the loop but you need to beware of side effects, like
not ending a condition properly. Keep in mind that a macro language like TgX is not that fr

16.5 Simple repeaters

For simple iterations we have \localcontrolledrepeat, \expandedrepeat, \unexpand-
edrepeat. These take one integer instead of three: the final iterator value.

16.6 Endless loops

There are three endless loop primitives: \localcontrolledendless, \expandedend-
less, \unexpandedendless. These will keep running till you quit them. The loop counter
can overflow the maximum integer value and will then start again at 1.

16.7 Loop variables

The following example shows how we can access the current, parent and grand par-
ent loop iterator values using a parameter like syntax:

\localcontrolledloop 1 4 1 {%
\localcontrolledloop 1 3 1 {%
\localcontrolledloop 1 2 1 {%
\edef\foo{[#G,#P,#I]1}\foo
\def \oof{<#G,#P,#I>}\oof

About quitting

257

(#G,#P,#I1)\space
}
\par

}

[1,1,11<1,1,1>(1,1,1) [1,1,2]<1,1,2>(1,1,2)
[1,2,1]1<1,2,1>(1,2,1) [1,2,2]<1,2,2>(1,2,2)
[1,3,1]<1,3,1>(1,3,1) [1,3,2]<1,3,2>(1,3,2)
[2,1,1]<2,1,1>(2,1,1) [2,1,2]1<2,1,2>(2,1,2)
[2,2,11<2,2,1>(2,2,1) [2,2,2]<2,2,2>(2,2,2)
[2,3,11<2,3,1>(2,3,1) [2,3,2]<2,3,2>(2,3,2)
[3,1,11<3,1,1>(3,1,1) [3,1,2]<3,1,2>(3,1,2)__
[3,2,1]1<3,2,1>(3,2,1) [3,2,2]<3,2,2>(3,2,2)
[3,3,11<3,3,1>(3,3,1) [3,3,2]<3,3,2>(3,3,2)
[4,1,11<4,1,1>(4,1,1) [4,1,2]<4,1,2>(4,1,2)
[4,2,11<4,2,1>(4,2,1) [4,2,2]<4,2,2>(4,2,2)
[4,3,11<4,3,1>(4,3,1) [4,3,2]<4,3,2>(4,3,2)

Another way to access a(ny) parent is:

\localcontrolledloop 1 4 1 {%
\localcontrolledloop 1 3 1 {%

\localcontrolledloop 1 2 1 {%
(\the\previousloopiterator2,%
\the\previousloopiteratorl,%
\the\currentloopiterator)

}

\par

}

These methods make that one doesn't have to store the outer loop variables for us-
age inside the inner loop. Watch out with the \edef:

\edef\foo{[#G,#P,#I1]}
\def \oof{<#G,#P,#I>}

\localcontrolledloop 1 4 1 {%
\localcontrolledloop 1 3 1 {%
\localcontrolledloop 1 2 1 {%

[}
“

Loop variables

258

o°

I iterator \currentloopiterator
P parent \previousloopiteratorl
G grandparent \previousloopiterator2

o® o°

o°

\edef\ofo{[#G,#P,#I]}%
\foo\oof\ofo (#G,#P,#I)\space

o°

~ -

par

}

[0,0,0]<1,1,1>[1,1,11(1,1,1) [0,0,0]<1,1,2>1,1,2
[0,0,0]1<1,2,1>[1,2,11(1,2,1)_[0,0,0]<1,2,2>1,2,2__
[0,0,0]<1,3,1>[1,3,11(1,3,1) [0,0,0]<1,3,2>1,3,2
[0,0,0]<2,1,1>[2,1,11(2,1,1) [0,0,0]<2,1,2>2,1,2
[0,0,0]1<2,2,1>[2,2,11(2,2,1)_[0,0,0]<2,2,2>2,2,2__
[0,0,0]<2,3,1>[2,3,11(2,3,1) [0,0,0]<2,3,2>2,3,2
[0,0,0]<3,1,1>[3,1,11(3,1,1) [0,0,0]<3,1,2>3,1,2
[0,0,0]<3,2,1>[3,2,11(3,2,1) [0,0,0]<3,2,2>[3,2,2]1(3,2,2)
[0,0,0]<3,3,1>[3,3,11(3,3,1) [0,0,0]<3,3,2>[3,3,21(3,3,2)
[0,0,0]1<4,1,1>[4,1,1]1(4,1,1) [0,0,0]1<4,1,2>4,1,2
[0,0,0]<4,2,1>[4,2,11(4,2,1) [0,0,0]<4,2,2>4,2,2
[0,0,0]<4,3,1>4,3,1 [0,0,0]<4,3,2>[4,3,2]1(4,3,2)

16.7 Colofon

Author Hans Hagen

ConTgXt 2025.02.19 14:35
LuaMetaTgX 2.11.07 ‘ 20250219
Support www.pragma-ade.com

contextgarden.net
ntg-context@ntg.nl

Colofon

259

17 Tokens

low level

1EX

tokens

23

260

Contents

17.1 Introduction 260
17.2 What are tokens 260
17.3 Some implementation details 263
17.4 Other data management 263
17.5 Macros 264
17.6 Looking at tokens 264

17.1 Introduction

Most users don't need to know anything about tokens but it happens that when TgXies mee

That said, because in documents about TgX the word ‘token’ does pop up I will try
to_give a little insight here. But for using TgX it's mostly irrelevant. The descriptions below_
kens as I see them.”

17.2 What are tokens

Both the words ‘node’ and ‘token’ are quite common in programming and also rather

old which is proven by the fact that they also are used in the TgX source. A node is a store
acter’ nodes (or in LuaTgX speak ‘glyph’ nodes) with properties like the font and the
character referred to. But before that happens, the three characters in the input t, e and x
interpreted as in this case being just that: characters. When you enter \TeX the in-

put processors_first sees a backslash and because that has a special meaning in TgX it will
you_enter $ TgX will look ahead for a second one in order to determine display math, push
A token is internally just a 32 bit number that encodes what TgX has seen. It is the assemt
our example gets tagged as such and encoded in this number in a way that the in-

tention can be derived later on.

Now, the way TgX looks at these tokens can differ. In some cases it will just look at this (3:

token = cmd chr

Talking about fashion: it would be more impressive to talk about TgX and friends as a software stack than
calling it a distribution. Today, it's all about marketing.

Introduction

261

Back to the three characters: these become tokens where the command code indi-

cates that it is a letter and the char code stores what letter we have at hand and

in the case of LuaTgX and LuaMetaTEX these are Unicode values. Contrary to the traditiona
code engines an utf sequence is read, but these multiple bytes still become one number tha
code has plenty of characters slots you can imagine that combining 16 catcode commands 1
code values makes a large repertoire of tokens.

There are more commands than the 16 basic characters related ones, in LuaMeta-
TEX we _have just over 150 command codes (LuaTgX has a few more but they are also orgar
MetaTgX the first one has sub command code 9 (vbox code) and the second one has code 1

Now, before we move on it is important to know that al these codes are in fact ab-
stract numbers. Although it is quite likely that engines that are derived from each
other have similar numbers (just more) this is not the case for LuaMetaTgX. Because the in
TEX) the command and char codes have been reorganized in a such a way that exposure is
TEXt LMTX and LuaMetaTgX were pretty useable during the process), but also had to (re)co

So, input is converted into tokens, in most cases one-by-one. When a token is assem-

bled, it either gets stored (deliberately or as part of some look ahead scanning), or

it immediately gets (what is called:) expanded. Depending on what the command is, some
action is triggered. For instance, a character gets appended to the node list imme-
diately. An \hbox command will start assembling a box which its own node list that

then gets some treatment: if this primitive was a follow up on \setbox it will get

stored, otherwise it might end up in the current node list as so called hlist node. Com-
mands that relate to registers have 0xFFFF char codes because that is how many reg-
isters we have per category.

When a token gets stored for later processing it becomes part of a larger data struc-
ture, a so called memory word. These memory words are taken from a large pool

of words and they store a token and additional properties. The info field contains

the token value, the mentioned command and char. When there is no linked list, the

link can actually be used to store a value, something that in LuaMetaTEX we actually do.

1 info link
2 info link
3 info link
n info link

When for instance we say \toks 0 {tex} the scanner sees an escape, followed by
4 letters (toks) and the escape triggers a lookup of the primitive (or macro or ...) with the
0 will push back a copy of this list into the input.

What are tokens

262

In addition to the token memory pool, there is also a table of equivalents. That one
is part of a larger table of memory words where TgX stores all it needs to store. The 16 gr

main hash null control sequence
128K hash entries

frozen control sequences

special sequences (undefined)

registers 17 internal & 64K user glues

4 internal & 64K user mu glues

12 internal & 64K user tokens

2 internal & 64K user boxes

116 internal & 64K user integers
0 internal & 64K user attribute

22 internal & 64K user dimensions

specifications|5 internal & 0 user

extra hash additional entries (grows dynamic)

So, a letter token t is just that, a token. A token referring to a register is again just
a number, but its char code points to a slot in the equivalents table. A macro, which
we _haven't discussed yet, is actually just a token list. When a name lookup happens
the hash table is consulted and that one runs in parallel to part of the table of equiv-
alents. When there is a match, the corresponding entry in the equivalents table points
to_a token list.

1 string index equivalents or (next > n) index
2 string index equivalents or (next > n) index
n string index equivalents or (next > n) index
n+1 string index equivalents or (next > n) index
n+ 2 string index equivalents or (next > n) index
n+m string index equivalents or (next > n) index

It sounds complex and it actually also is somewhat complex. It is not made easier

by the fact that we also track information related to grouping (saving and restoring), need
reference counts for copies of macros and token lists, sometimes store information

directly instead of via links to token lists, etc. And again one cannot compare Lua-

MetaTgX with the other engines. Because we did away with some of the limitations of the t

What are tokens

24

263

1 level type flag value
2 level type flag value
3 level type flag value
n level type flag value

So, here LuaMetaTgX differs from other engines because it combines two tables, which is p
MetaTgX macros can have extra properties (flags) and these also need one byte. Contrary tc

Because a macro starts with a reference count we have some room in the info field
to store information about it having arguments or not. It is these details that make
LuaMetaTgX a bit more efficient in terms of memory usage and performance than its ancest
TEX. But as with the other changes, it was a very stepwise process in order to keep the sys

17.3 Some implementation details

Sometimes there is a special head token at the start. This makes for easier append-

ing of extra tokens. In traditional TgX node lists are forward linked, in LuaTgX they are dou

For various reasons original TEX uses global variables temporary lists. This is for instance n
TEX we often just serialize lists and using local variables makes more sense. One of the firs
MetaTgX was to group all global variables in (still global) structures but well isolated. That

Because TgX had to run on machines that we nowadays consider rather limited, it had to b
MetaTEX we stay as close to original TgX as possible but there have been some improvemer
TEX we store much more in nodes (each has a prev pointer and an attribute list pointer anc

17.4 Other data management
There is plenty going on in TEX when it processes your input, just to mention a few:

* Grouping is handled by a nesting stack.

* Nested conditionals (\if...) have their own stack.

* The values before assignments are saved on the save stack.

* Also other local changes (housekeeping) ends up in the save stack.
* Token lists and macro _aliases have references pointers (reuse).

* Attributes, being linked node lists, have their own management.

On the agenda of LuaMetaTgX is to use this property in the underlying code, that doesn't yet profit from
this and therefore keep previous pointers in store.

Some implementation details

264

In all these subsystems tokens or references to tokens can play a role. Reading a

single character from the input can trigger a lot of action. A curly brace tagged as
begin group command will push the grouping level and from then on registers and
some other quantities that are changed will be stored on the save stack so that af-

ter the group ends they can be restored. When primitives take keywords, and no match
happens, tokens are pushed back into the input which introduces a new input level
(also_some stack). When numbers are read a token that represents no digit is pushed
back too and macro packages use numbers and dimensions a lot. It is a surprise that
TEX is so fast.

17.5 Macros

There is a distinction between primitives, the build in commands, and macros, the
commands defined by users. A primitive relates to a command code and char code

but macros are, unless they are made an alias to something else, like a \countdef or \let
sically pointers to a token list. There is some additional data stored that makes it

possible to parse and grab arguments.

When we have a control sequence (macro) \controlsequence the name is looked up
in the hash table. When found its value will point to the table of equivalents. As men-
tioned, that table keeps track of the cmd and points to a token list (the meaning). We
saw that this table also stores the current level of grouping and flags.

If we say, in the input, \hbox to 10pt {x\hss}, the box is assembled as we go and
when it is appended to the current node list there are no tokens left. When scanning
this, the engine literally sees a backslash and the four letters hbox. However when
we_have this:

\def\MyMacro{\hbox to 10pt {x\hss}}

the \hbox has become one memory word which has a token representing the \hbox prim-
itive plus a link to the next token. The space after a control sequence is gobbled so

the next two tokens, again stored in a linked memory word, are letter tokens, followed

by two other and two letter tokens for the dimensions. Then we have a space, a brace, a_
letter, a primitive and a brace. The about 20 characters in the input became a dozen
memory words each two times four bytes, so in terms of memory usage we end up

with quite a bit more. However, when TgX runs over that list it only has to interpret the tol

17.6 Looking at tokens

When you say \tracingall you will see what the engine does: read input, expand
primitives and macros, typesetting etc. You might need to set \tracingonline to get

Macros

265

a bit more output on the console. One way to look at macros is to use the \meaning com-
mand, so if we have:

\permanent\protected\def\MyMacro#1#2{Do #1 or #2!}
we can say this:

\meaning \MyMacro
\meaningless\MyMacro
\meaningfull\MyMacro

and get:

protected macro:#1#2->Do #1 or #2!
#1#2->Do #1 or #2!
permanent protected macro:#1#2->Do #1 or #2!

You get less when you ask for the meaning of a primitive, just its name. The \meaningfull
itive gives the most information. In LuaMetaTEX protected macros are first class commands:
MetaTgX. Instead we have \tolerant macros but that's another story. The flags that were n

For the above definition, the \showluatokens command will show a meaning on the
console.

\showluatokens\MyMacro

This gives the next list, where the first column is the address of the token, the sec-
ond one the command code, and the third one the char code. When there are argu-
ments_involved, the list of what needs to get matched is shown.

permanent protected control sequence: MyMacro
501263 19 49 match argument 1
501087 19 50 match argument 2
385528 20 0 end match

501090 11 68 letter D (U+00044)
30833 11 111 Tletter o (U+O006F)
500776 10 32 spacer

385540 21 1 parameter reference

112057 10 32 spacer

431886 11 111 letter o (U+0006F)
30830 11 114 Tletter r (U+00072)

30805 10 32 spacer

Looking at tokens

266

500787 21 2 parameter reference
213412 12 33 other char I (U+00021)

In the next subsections I will give some examples. This time we use helper defined
in a module:

\usemodule[system-tokens]

17.6.1 Example 1: in the input

\luatokentable{l \bf{2} 3\what {!}}

given token list:

<no tokens>

17.6.2 Example 2: in the input

\luatokentable{a \the\scratchcounter b \the\parindent \hbox to 10pt{x}}

given token list:

<no tokens>

17.6.3 Example 3: user registers

\scratchtoks{foo \framed{\red 123}456}

\luatokentable\scratchtoks

token register: scratchtoks

<no tokens>

17.6.4 Example 4: internal variables

\luatokentable\everypar

internal token variable: everypar

<no tokens>

Looking at tokens

267

17.6.5 Example 5: macro definitions

\protected\def\whatever#l[#2] (#3)\relax
{oeps #1 and #2 & #3 done ## error}

\luatokentable\whatever

protected control sequence: whatever

599406 19 49 match argument 1
593797 12 91 otherchar [U+0005B
599391 19 50 match argument 2
598333 12 93 otherchar 1 U+0005D
594406 12 40 other char (U+00028
599663 19 51 match argument 3
597823 12 41 otherchar) U+00029
597157 16 0 relax relax
600331 20 0 end match

599152 11 111 letter o U+0006F
597392 11 101 letter e U+00065
598150 11 112 letter p U+00070
593060 11 115 letter s U+00073
597919 10 32 spacer

597878 21 1 parameter reference

598702 10 32 spacer

600245 11 97 letter a U+00061
598665 11 110 letter n U+0006E
598453 11 100 letter d U+00064
598016 10 32 spacer

596411 21 2 parameter reference

598221 10 32 spacer

587578 12 38 otherchar & U+00026
597894 10 32 spacer

596414 21 3 parameter reference

594345 10 32 spacer

593198 11 100 letter d U+00064
600249 11 111 letter o U+0006F
596718 11 110 letter n U+0006E
598262 11 101 letter e U+00065
596075 10 32 spacer

599133 6 35 parameter

598719 10 32 spacer

600259 11 101 letter e U+00065
597969 11 114 letter r U+00072
597640 11 114 letter r U+00072
593599 11 111 letter o U+0006F
598491 11 114 letter r U+00072

17.6.6 Example 6: commands

\luatokentable\startitemize

Looking at tokens

268

\luatokentable\stopitemize

frozen instance protected control sequence: startitemize

520968 147 0 tolerant protected call startitemgroup
520969 12 91 otherchar [U+0005B
520970 11 105 letter i U+00069
520971 11 116 letter t U+00074
520972 11 101 letter e U+00065
520973 11 109 letter m U+0006D
520974 11 105 letter i U+00069
520975 11 122 letter z U+0007A
520976 11 101 letter e U+00065
520977 12 93 other char 1 U+0005D

frozen instance protected control sequence: stopitemize

431131 143 0 protected call stopitemgroup

17.6.7 Example 7: commands

\luatokentable\doifelse

permanent protected control sequence: doifelse

55399 19 49 match argument 1
55400 19 50 match argument 2
55401 20 0 end match

55402 137 29 iftest iftok

55403 1 123 left brace

55404 21 1 parameter reference

55405 2 125 right brace
55406 1 123 left brace

55407 21 2 parameter reference

55408 2 125 right brace

55409 131 0 expand after expandafter

55410 142 0 call firstoftwoarguments
55411 137 3 iftest else

55412 131 0 expand after expandafter

55413 142 0 call secondoftwoarguments
55414 137 2 if test fi

17.6.8 Example 8: nothing

\luatokentable\relax

primitive control sequence: relax

<no tokens>

Looking at tokens

269

17.6.9 Example 9: hashes

\edef\ foo#1#2{ (#1) (\letterhash) (#2)} \luatokentable\foo

control sequence: foo

598665 19 49 match argument 1
597323 19 50 match argument 2
596872 20 0 end match

596214 12 40 other char (U+00028

599184 21 1 parameter reference

596023 12 41 otherchar) U+00029

595842 12 40 other char (U+00028

584378 12 35 other char # U+00023

598201 12 41 otherchar) U+00029

596985 12 40 other char (U+00028

597972 21 2 parameter reference

595559 12 41 other char) U+00029

17.6.10 Example 10: nesting

\def\foo#l{\def\foo##1{ (#1) (##1)}} \luatokentable\foo

control sequence: foo

599931 19 49 match argument 1
598622 20 0 end match

596262 128 1 def def
598418 142 0 call foo
599152 6 35 parameter

598452 12 49 other char 1 U+00031
598680 1 123 left brace

598016 12 40 other char (U+00028
595752 21 1 parameter reference

593763 12 41 other char) U+00029
599634 12 40 other char (U+00028
599983 6 35 parameter

600306 12 49 other char 1 U+400031
600249 12 41 other char) U+00029

596363 2 125 right brace

17.6.11 Remark

In all these examples the numbers are to be seen as abstractions. Some command
codes and sub command codes might change as the engine evolves. This is why the
LuaMetaTEX engine has lots of Lua functions that provide information about what number r

Looking at tokens

270

17.6.11 Colofon

Author Hans Hagen

ConTgXt 2025.02.19 14:35
LuaMetaTgX 2.11.07 ‘ 20250219
Support www.pragma-ade.com

contextgarden.net
ntg-context@ntg.nl

Colofon

271

18 Buffers

low level

1EX

buffers

272

Contents

18.1 Preamble 272
18.2 Encoding 272
18.3 Performance 273
18.4 Files 274
18.5 Macros 274
18.6 Token lists 275
18.7 Buffers 275
18.8 Setups 278
18.9 xml 279
18.10Lua 279
18.11 Protection 279

18.1 Preamble

Buffers are not that low level but it makes sense to discuss them in this perspective
because it relates to tokenization, internal representation and manipulating.

In due time we can describe some more commands _and details here. This is a start. Feel
free to tell me what needs to be explained.

18.2 Encoding

Normally processing a document starts with reading from file. In the past we were

talking single bytes that were then maps onto a specific input encoding that itself

matches the encoding of a font. When you enter an ‘a’ its (normally ascii) number

97 becomes the index into a font. That same number is also used in the hyphenator

which is why font encoding and hyphenation are strongly related. If in an eight bit

TEX engine you need a precomposed ‘@’ you have to use an encoding that has that
character in some slot with again matching fonts and patterns. The actually used font

can have the shapes in different slots and remapping is then done in the backend code usir

In eight bit environments all this brings a bit of a resource management nightmare
along with complex installation of new fonts. It also puts strain on the macro pack-
age, especially when you want to mix different input encodings onto different font
encodings and thereby pattern encodings in the same document. You can compare
this with code pages in operating system, but imagine them potentially being mixed
in one document, which can happen when you mix multiple languages where the ac-
cumulated number of different characters exceeds 256. You end up switching between

Preamble

273

encodings. One way to deal with it is making special characters active and let their
meaning differ per situation. That is for instance how in MKII we handled utf8 and
thereby got around distributing multiple pattern files per language as we only needed
to_encoding them in utf and then remap them to the required encoding when load-

ing patterns. A mental exercise is wondering how to support cjk scripts in an eight
bit MkII, something that actually can be done with some effort.

The good news is that when we moved from MKII to MKIV we went exclusively utf8 be-
cause_that is what the LuaTgX engine expects. Upto four bytes are read in and translated iz
code character. The internal representation is a 32 bit integer (four bytes) instead of a sing
TEXt) but I'm pretty sure that nowadays no one uses input other than utf8. While Con-

TEXt is normally quite upward compatible this is one area where there were fundamental ct

There is still some interpretation going on when reading from file: for instance, we
need to normalize the Unicode input, and we feed the engine separate lines on demand. Ap

» Example code has to be typeset as-is, so braces etc. are just that. This means that we h:

* Content is collected and used later. A separation of content and usage later on often hel;
ping a table in a buffer” and “including that buffer when a table is placed” using
the placement macros.

» Embedded MetaPost and Lua code. These languages come with different interpretation of
*» The content comes from a different source. Examples are xml files where angle brackets
*» The content is generated. It can for instance come from Lua, where bytes (representing

For these reasons ConTgXt always had ways to store data in ways that makes this possible.

18.3 Performance

When TgX came around, the bottlenecks in running TgX were the processor, memory and di:
[2] .. to show up. It was possible to run TgX on a personal computer but it was somewhat
pass) trickery was demanding.

When processors became faster and memory plenty the disk became the bottleneck, but
that changed when ssd's showed up. Combined with already present file caching that

had some impact. We are now in a situation that cpu cores don't get that much faster

(at least not twice as fast per iteration) and with TgX being a single core byte cruncher we
TEXt code, combined with LuaMetaTgX will give you what you need with a reasonable perfo:
takes’ are made. Inefficient Lua and TEX code has way more impact than storing a few mor

Performance

274

18.4 Files

Nearly always files are read once per run. The content (mixed with commands) is

scanned and macros are expanded and/or text is typeset as we go. Internally the Lua-
MetaTgX engine is in “scanning from file”, “scanning from token lists”, or “scanning

from Lua output” mode. The first mode is (in principle) the slowest because utf se-

quences are converted to tokens (numbers) but there is no way around it. The sec-

ond method is fast because we already have these numbers, but we need to take
into_account where the linked list of tokens comes from. If it is converted runtime

from for instance file input or macro expansion we need to add the involved over-

head. But scanning a stored macro body is pretty efficient especially when the macro

is part of the loaded macro package (format file). The third method is comparable

with reading from file but here we need to add the overhead involved with storing

the Lua output into data structures suitable for TgX's input mechanism, which can involve n
MetaTgX we even went a bit further, also because we know what kind of input, processing

When reading from file or Lua output we interpret bytes turned utf numbers and

that is when catcode regimes kick in: characters are interpreted according to the
catcode properties: escape character (backslash), curly braces (grouping and argu-
ments), dollars (math), etc. While with reading from token lists these catcodes are
already taken care of and we're basically interpreting meanings instead of characters. By
changing the catcode regime we can for instance typeset content verbatim from files

and Lua strings but when reading from token lists we're sort of frozen. There are

tricks to reinterpret the token list but that comes with overhead and limitations.

18.5 Macros

A macro can be seen as a named token with a meaning attached. In LLuaMetaTEX macros ce
code character doesn't need all four bytes of an integer and because in the engine numbers

\def\foo{abc} \foo \foo \foo

When the engine fetches a token from a list it will interpret the command and when

it fetches from file it will create tokens on the fly and then interpret those. When

a file or list is exhausted the engine pops the stack and continues at the previous
level. Because macros are already tokenized they are more efficient than file input. For
more_about macros you can consult the low level document about them.

The more you use a macro, the more it pays off compared to a file. However don't
overestimate this, because in the end the typesetting and expanding all kind of other
involved macros might reduce the file overhead to noise.

Files

275

18.6 Token lists

A token list is like a macro but is part of the variable (register) system. It is just
a list (so no arguments) and you can append and prepend to that list.

\toksl23={abc} \the\toks123
\scratchtoks{abc} \the\scratchtoks

Here \scratchtoks is defined with \newtoks which creates an efficient reference to

a list so that, contrary to the first line, no register number has to be scanned. There
are low level manuals about tokens and registers that you can read if you want to_
know more about this. As with macros the list in this example is three tokens long. Con-
trary to macros there is no macro overhead as there is no need to check for argu-
ments. 2°

Because they use more or less the same storage method macros and token list reg-
isters perform the same. The power of registers comes from some additional manip-
ulators in LuaTgX (and LuaMetaTgX) and the fact that one can control expansion with \the,

18.7 Buffers

Buffers are something specific for ConTgXt and they have always been part of this system. /

\startbuffer[one]
line 1

line 2
\stopbuffer

Among the operations on buffers the next two are used most often:

\typebuffer[one]
\getbuffer[one]

Scanning a buffer at the TgX end takes a little effort because when we start reading the ca

\startluacode
buffers.assign("one",[[
line 1

line 2

11

25 In LuaMetaTgX a macro without arguments is also quite efficient.

Token lists

276

\stopluacode

Always keep in mind that buffers eventually are read as files: character by charac-
ter, and at that time the content gets (as with other files) tokenized. A buffer name
is optional. You can nest buffers, with and without names.

Because ConIgXt is very much about re-use of content and selective processing we have an

The \definebuffer command defines a new buffer environment. When you set buffers

in Lua you don't need to define a buffer because likely you don't need the \start and \stc
mands. Instead of \getbuffer you can also use \getdefinedbuffer with defined buffers. In
that case the before and after keys of that specific instance are used.

The \getinlinebuffer command, which like the getters takes a list of buffer names, ig-
nores leading and trailing spaces. When multiple buffers are flushed this way, spac-
ing between buffers is retained.

The most important aspect of buffers is that the content is not interpreted and tokenized: tl

\definebuffer[MyBuffer]

\startMyBuffer
\bold{this is
a buffer}
\stopMyBuffer

\typeMyBuffer \getMyBuffer
These commands result in:

\bold{this is
a buffer}

this_is_a buffer

There are not that many parameters that can be set: before, after and strip (when
set to no leading and trailing spacing will be kept. The \stop... command, in our
example \stopMyBuffer, can be defined independent to so something after the buffer
has be read and stored but by default nothing is done.

You can test if a buffer exists with \doifelsebuffer (expandable) and \doifelse-
bufferempty (unexpandable). A buffer is kept in memory unless it gets wiped clean
with resetbuffer._

Buffers

277

\savebuffer [MyBuffer][temp] % gets name: jobname-temp.tmp
\savebufferinfile[MyBuffer][temp.log] % gets name: temp.log

You can also stepwise fill such a buffer:

\definesavebuffer[slide]

\startslide
\starttext
\stopslide
\startslide
slide 1
\stopslide
text 1 \par
\startslide
slide 2
\stopslide
text 2 \par
\startslide
\stoptext
\stopslide

After this you will have a file \jobname-slide.tex that has the two lines wrapped

as text. You can set up a ‘save buffer’ to use a different filename (with the file key), a_
different prefix using prefix and you can set up a directory. A different name is

set with the list key.

You can assign content to a buffer with a somewhat clumsy interface where we use
the delimiter \endbuffer. The only restriction is that this delimiter cannot be part
of the content:

\setbuffer[name]lhere comes some text\endbuffer

For more details and obscure commands that are used in other commands you can
peek into the source.

Using buffers in the cld interface is tricky because of the catcode magick that is in-
volved but there are setters and getters:

function arguments
buffers.assign name, content [,catcodes]
buffers.erase name

Buffers

278

buffers.prepend name, content
buffers.append name, content
buffers.exists name
buffers.empty name

buffers.getcontent name
buffers.getlines name

There are a few more helpers that are used in other (low level) commands. Their
functionality might adapt to their usage there. The context.startbuffer and con-
text.stopbuffer are somewhat differently defined than regular cld commands.

18.8 Setups

A setup is basically a macro but is stored and accessed in a namespace separated
from ordinary macros. One important characteristic is that inside setups newlines
are ignored.

\startsetups MySetupA
This is line 1
and this is line 2
\stopsetups

\setup{MySetupA}
This_is_line_land_this_is_line_2_

A simple way out is to add a comment character preceded by a space. Instead you
can also use \space:

\startsetups [MySetupB]
This is line 1 %
and this is line 2\space
while here we have line 3
\stopsetups

\setup[MySetupB]
This _is line 1 and _this_is line 2 while here we have line 3

You can use square brackets instead of space delimited names in definitions and also
in calling up a (list of) setup(s). The \directsetup command takes a single setup
name and is therefore more efficient.

Setups

279

Setups_are basically simple macros although there is some magic involved that comes
from their usage in for instance xml where we pass an argument. That means we
can do the following:

\startsetups MySetupC
before#lafter
\stopsetups

\setupwithargument{MySetupC}{ {\em and} }
before_and_after__

Because a setup is a macro, the body is a linked list of tokens where each token takes
8 bytes of memory, so MySetupC has 12 tokens that take 96 bytes of memory (plus_
some overhead related to macro management).

18.9 xml

Discussing xml is outside the scope of this document but it is worth mentioning that
once an xml tree is read is, the content is stored in strings and can be filtered into
TeX, where it is interpreted as if coming from files (in this case Lua strings). If needed the

18.10 Lua

As mentioned already, output from Lua is stored and when a Lua call finishes it ends

up on the so called input stack. Every time the engine needs a token it will fetch

from the input stack and the top of the stack can represent a file, token list or Lua
output. Interpreting bytes from files or Lua strings results in tokens. As a side note: Lua
output can also be already tokenized, because we can actually write tokens and nodes_
from Lua, but that's more an implementation detail that makes the Lua input stack
entries a bit more complex. It is normally not something users will do when they use
Lua in their documents.

18.11 Protection

When you define macros there is the danger of overloading some defined by the sys-
tem. Best use CamelCase so that you stay away from clashes. You can enable some
checking:

\enabledirectives[overloadmode=warning]

280

or when you want to quit on a clash:
\enabledirectives[overloadmode=error]
When these trackers are enabled you can get around the check with:

\pushoverloadmode

\popoverloadmode

But delay that till you're sure that redefining is okay.

18.11 Colofon

Author Hans Hagen

ConTgXt 2025.02.19 14:35
LuaMetaTgX 2.11.07 ‘ 20250219
Support www.pragma-ade.com

contextgarden.net
ntg-context@ntg.nl

Colofon

281

19 Accuracy

low level

1EX

accuracy

282

Contents

19.1 Introduction 282
19.2 Posits 283
19.3 MetaPost 286
19.4 Lua 287

19.1 Introduction

This is work_in_progress, uncorrected.

When you look at TgX and MetaPost output the accuracy of the rendering stands out, unles:
portable) floating point calculations, it does all with 32 bit integers, except in the

backend where glue calculations are used for finalizing the glue values. It all changed

a bit when we added Lua because there we mix integers and doubles but in prac-

tice it works out okay.

When looking at floating point (and posits) one can end up in discussions about which
one is better, what the flaws fo each are, etc. Here we're only interested in the fact
that posits are more accurate in the ranges where TEX and MetaPost operate, as well as th

When you work with dimensions like points, they get converted to an integer num-
ber (the sp unit) and from that it's just integer calculations. The maximum dimension
is 16383.99998pt, which already shows a rounding issue. Of course when one goes_
precise for sure there is some loss, but on the average we're okay. So, in the next
example the two last rows are equivalent:

.1pt 0.1pt 6554sp
.2pt 0.2pt 13107sp
.3pt 0.3pt 19661sp
.1pt + .2pt 0.3pt 19661sp

When we're at the Lua end things are different, there numbers are mapped onto 64 bit
floating point variables (doubles) and not all numbers map well. This is what we get
when we work with doubles in Lua:

1 0.1

.2 0.2

.3 0.3

.1+ .2 0.30000000000000004

Introduction

283

The serialization looks as if all is okay but when we test for equality there is a prob-
lem:

.3 == .3 true
.1 + .2 == .3 false

This means that a test like this can give false positives or negatives unless one tests
the difference against the accuracy (in MetaPost we have the eps variable for that). In_
TEX clipping of the decimal fraction influences equality.

\iflua{ .3 == .3 } Y\else N\fi different
\iflua{ .1 + .2 == .3 } Y\else N\fi different

The serialization above misguides us because the number of digits displayed is lim-
ited. Actually, when we would compare serialized strings the equality holds, definitely
within the accuracy of TgX. But here is reality:

3 A+ .2
%0.10g 0.3 0.3
%0.17g 0.29999999999999999 0.30000000000000004
%0.20g 0.2999999999999999889 0.30000000000000004441

%0.25g 0.2999999999999999888977698 0.300000000000000044408921

The above examples use 0.1, 0.2 and 0.3 and on a 32 bit float that actually works
out okay, but LuaMetaTgX is 64 bit. Is this really important in practice? There are indeed c:

19.2 Posits

The next table shows the same as what we started with but with a different serial-
ization.

1 0.1
.2 0.2
.3 0.300000001
.1+ .2 0.300000001

And here we get equality in both cases:

.3 == .3 true
.1 + .2 == .3 true

The next table shows what we actually are dealing with. The \if-test is not a prim-
itive but provided by ConTgXt.

Posits

284

\ifpositunum{ .3 == .3 } Y\else N\fi equal
\ifpositunum{ .1 + .2 == .3 } Y\else N\fi equal

And what happens when we do more complex calculations:

math .sin(0.1 + 0.2) == math .sin(0.3) false
posit.sin(0.1 + 0.2) == posit.sin(0.3) true

Of course other numbers might work out differently! I just took the simple tests that
came to mind.

So what are these posits? Here it's enough to know that they are a different way
to _store numbers with fractions. They still can loose precision but a bit less on smaller
values and often we have relative small values in TgX. Here are some links:

https://www.johngustafson.net/pdfs/BeatingFloatingPoint.pdf
https://posithub.org/conga/2019/docs/14/1130-FlorentDeDinechin.pdf

There are better explanations out there than I can provide (if at all). When I first
read about these unums (a review of the 2015 book “The End of Error Unum Com-
puting”) I was intrigued and when in 2023 I read something about it in relation to
RISCV I decided to just add this playground for the users. After all we also have dec-
imal support. And interval based solutions might actually be good for MetaPost, so
that is why we have it as extra number model. There we need to keep in mind that
MetaPost in non scaled models also apply some of the range checking and clipping
that happens in scaled (these magick 4096 tricks).

For now it is enough to know that it's an alternative for floats that could work better in so1

But how about TgX? Per April 2023 the LuaMetaTgX engine has native support for floats (th
TEXt). How that works can be demonstrated with some examples. The float related commans

\scratchdimen=1.23456pt
\scratchfloat=1.23456

We now use these two variables in an example:

\setbox0\hbox to \scratchdimen {x}\the\wdO
\scratchdimen \dimexpr \scratchdimen * 2\relax
\setboxO\hbox to \scratchdimen {x}\the\wd0O

26 Are 64 bit posits actually being worked on in softposit? There are some commented sections. We also need
to patch some unions to make it compile as C.

Posits

285

\advance \scratchdimen \scratchdimen
\setbox0@\hbox to \scratchdimen {x}\the\wdO
\multiply\scratchdimen by 2

\setbox0\hbox to \scratchdimen {x}\the\wd0

1.23456pt
2.46912pt
4.93823pt
9.87646pt

When we use floats we get this:

\setbox0\hbox to \scratchfloat {x}\the\wd0O
\scratchfloat \floatexpr \scratchfloat * 2\relax
\setboxO\hbox to \scratchfloat {x}\the\wd0O
\advance \scratchfloat \scratchfloat
\setbox0\hbox to \scratchfloat {x}\the\wd0
\multiply\scratchfloat by 2

\setbox0\hbox to \scratchfloat {x}\the\wd0O

1.23456pt
2.46912pt
4.93823pt
9.87648pt

So which approach is more accurate? At first sight you might think that the dimen-
sions are better because in the last two lines they indeed duplicate. However, the
next example shows that with dimensions we lost some between steps.

\the\scratchfloat
\scratchfloat \floatexpr \scratchfloat * 2\relax \the\scratchfloat
\advance \scratchfloat \scratchfloat \the\scratchfloat
\multiply\scratchfloat by 2 \the\scratchfloat

1.2345599979162216187
2.4691199958324432373
4.9382399916648864746
9.8764799833297729492

One problem with accuracy is that it can build up. So when one eventually does some
comparison the expectations can be wrong.

\dimen0=1.2345pt

Posits

286

\dimen2=1.2345pt

\ifdim \dimen@=\dimen2 S\else D\fi \space +0sp: [dim]
\ifintervaldimO@sp\dimenO® \dimen2 O\else D\fi \space +0sp: [0Osp]

\advance\dimen2 1lsp

\ifdim \dimen0=\dimen2 S\else D\fi \space +1sp: [dim]
\ifintervaldim 1sp \dimen@ \dimen2 O\else D\fi \space +1sp: [1lsp]
\ifintervaldim 1lsp \dimen2 \dimen@ O\else D\fi \space +1sp: [1lsp]
\ifintervaldim 2sp \dimen@ \dimen2 O\else D\fi \space +1sp: [2sp]
\ifintervaldim 2sp \dimen2 \dimen@ O\else D\fi \space +1sp: [2sp]

\advance\dimen2 1sp

\ifintervaldim 1lsp \dimen@\dimen2 O\else D\fi \space +2sp: [1lsp]
\ifintervaldim 1sp \dimen2\dimen0® O\else D\fi \space +2sp: [1lsp]
\ifintervaldim 5sp \dimen@\dimen2 O\else D\fi \space +2sp: [5sp]
\ifintervaldim 5sp \dimen2\dimen0® O\else D\fi \space +2sp: [5sp]

Here we show a test for overlap in values, the same can be done with integer num-
bers (counts) and floats. This interval checking is an experiment and we'll see it if
gets used.

S +0sp: [dim] O +Osp: [Osp]
D +1sp: [dim] O +1sp: [1sp] O +1sp: [1lsp] O +1sp: [2sp] O +1sp: [2sp]
D +2sp: [1sp] D +2sp: [1sp] O +2sp: [5sp] O +2sp: [5sp]

There are also \ifintervalfloat and \ifintervalnum. Because I have worked around
these few scaled point rounding issues for decades, it might actually take some time
before we see the interval tests being used in ConTgXt. After all, there is no reason to touc

To come back to posits, just to be clear, we use 32 bit posits and not 32 bit floats, which
we could have but that way we gain some accuracy because less bits are used by
default for the exponential.

In ConTEXt we also provide a bunch of pseudo primitives. These take one float: \pfsin, \pf

19.3 MetaPost

In addition to the instances metafun (double in LMTX), scaledfun, doublefun, dec-
imalfun we now also have positfun. Because we currently use 32 bit posits in the

new number system there is no real gain over the already present 64 bit doubles. When
64 bit posits show up we might move on to that.

MetaPost

287

19.4 Lua

We support posits in Lua too. Here we need to create a posit user data object. The
usual metatable magick kicks in:

local p = posit.new(123.456)
local q = posit.new(789.123)
local r=p + q

Here we just mention what is currently interface. The management functions are: new, copy
umber, integer, rounded, toposit and fromposit. The usual operators are also sup-

more verbose bor, bxor, band, shift, rotate are there too.

There is a subset of math provided: min, max, abs, conj, modf, acos, asin, atan, ceil, cos,
what special are NaN and NaR.

Currently integer division (//) and modulo (%) are not available, but that might hap-
pen_at some time.

19.4 Colofon

Author Hans Hagen

ConTgXt 2025.02.19 14:35
LuaMetaTgX 2.11.07 ‘ 20250219
Support www.pragma-ade.com

contextgarden.net
ntg-context@ntg.nl

Lua

288

20 Balancing

low level

1EX

balancing

289

Contents

20.1 Introduction 289
20.2 Intercepting the MVL 289
20.3 Balancing 292
20.4 Forcing breaks 297
20.5 Marks 298
20.6 Inserts 298
20.7 Discardables 302
20.8 Passes 304
20.9 Passes 305

20.1 Introduction

This is work in progress as per end 2024 these mechanisms are still in flux. We ex-
pect them to be stable around the ConTgXt meeting in 2025. The text is not corrected, so fi

This manual is about a new (sort of fundamental) feature that got added to LuaMeta-

TeX when we started upgrading column sets. In TgX we have a par builder that does a mull
pass_optimization where it considers various solutions based on tolerance, penalties, de-
merits etc. The page builder on the other hand is forward looking and backtracks

to a previous break when there is an overflow. The balancing mechanism discussed

here is basically a page builder operating like the par builder: it looks at the whole
picture.

In order to make this a useful mechanism the engine also permits intercepting the
main vertical list, so we start by introducing this.

20.2 Intercepting the MVL

When content gets processed it's added to a list. We can be in horizontal mode or

vertical mode (let's forget about math mode). In vertical mode we can be in a box

context (say \vbox) or in what is called the main vertical list: the one that makes

the page. But what is page? When TgX has collected enough to match the criteria set by \r

For various mechanisms it matters if they are used inside a contained boxed environ-
ment or in the more liberal main vertical list (from now on called mvl). That's why
we _can _intercept the mvl and use it later. Intercepting works as follows:

\beginmvl 1

Introduction

290

various content
\endmv'l

\beginmvl 2
various content
\endmvl

When at some point you want this content, you can do this:

\setbox\scratchboxone\flushmvl 2
\setbox\scratchboxtwo\flushmvl 1

and then do whatever is needed. You can see what goes on with:
\tracingmvl 1

There is not much more to say other than that this is the way to operate on content
as if it were added to the page which can be different from collecting something in
a vertical box. Think of various callbacks that can differ for the mvl and a box.

The \beginmvl primitive takes a number or a set of keywords, as in:

\beginmvl

index 1

options \numexpr "01 + "04\relax
\relax

There is of course some possible interference with mechanism that check the page
properties like \pagegoal. If needed one can check this:

\ifcase\mvlcurrentlyactive
% main mvl

\or
% first one

\else
% other ones

\fi

Possible applications of this mechanism are the mentioned columns and parallel, in-

dependent, streams. However for that we need to be able to manipulate the collected
content. Actually, the next manipulator preceded the capturing, because we first wanted
to make sure that what we had in mind made sense.

Intercepting the MVL

291

The beginmvl also accepts keywords. You can specify an index (an integer), a prevdepth (d
mensions) and options (an integer bitset). Possible option bit related values are:

0x1 ignore prevdepth \ignoreprevdepthmvloptioncode
0x2 no prevdepth \noprevdepthmvloptioncode

0x4 discard top \discardtopmvloptioncode

0x8 discard bottom \discardbottommvloptioncode

Here the last column is a numeric alias available in ConTgXt. More options are likely to sho

\beginmvl

index 1

prevdepth 0Opt

options \discardtopmvloptioncode
\relax
\scratchdimen\prevdepth
\dontleavehmode
\quad\the\mvlcurrentlyactive\quad\the\scratchdimen
\quad\blackrule[height=\strutht,depth=\strutdp,color=darkred]
\endmvl

\ruledhbox {\llap{l\quad}\flushmvl 1}

1./ 1 oopt L |

\beginmvl
index 2
options \numexpr
\ignoreprevdepthmvloptioncode
+ \discardtopmvloptioncode
\relax

\relax

\scratchdimen\prevdepth

\dontleavehmode
\quad\the\mvlcurrentlyactive\quad\the\scratchdimen
\quad\blackrule[height=\strutht,depth=\strutdp,color=darkred]
\endmv1l

\ruledhbox {\llap{2\quad}\flushmvl 2}
2 . 2 -1000.0pt L

\beginmvl 3 % when no keywords are used we expect a number
\scratchdimen\prevdepth

Intercepting the MVL

292

\dontleavehmode
\quad\the\mvlcurrentlyactive\quad\the\scratchdimen
\quad\blackrule[height=\strutht,depth=\strutdp,color=darkred]
\endmvl

\ruledhbox {\llap{3\quad}\flushmvl 3}

3 0.0pt L

\beginmvl index 4 options 1

\scratchdimen\prevdepth

\dontleavehmode
\quad\the\mvlcurrentlyactive\quad\the\scratchdimen
\quad\blackrule[height=\strutht,depth=\strutdp,color=darkred]
\endmvl

\ruledhbox {\1lap{4\quad}\flushmvl 4}

4 -1000.0pt [l

20.3 Balancing

Balancing is not referring to balancing columns but to ‘a result that looks well bal-

anced’. Just like we want lines in a paragraph to look consistent with each other, some-
thing that is reflected in the (adjacent) demerits, we want the same with vertical split

of pieces. For this purpose we took elements of the par builders to construct a (page) snip-
pet builder. Here are some highlights:

* Instead of a pretolerance, tolerance and emergency pass we only enable the last
two. In the par builder the pretolerance pass is the one without hyphenation.

* We seriously considered vertical discretionaries but eventually rejected the idea: we
just don't expect users to go through the trouble of adding lots of split related
pre, post and replace content. It's not hard to support it but in the end it also
interfered with other demands that we had. We kept the code around for a while
but then removed it. To mention one complication: if we add some new node we
also need to intercept it in various callbacks that we already have in place in Con-
TEXt. As with horizontal discretionaries, we then need to go into the components and sor

* As with the par builder, TEX will happily produce an overfull box when no solution is pos

Balancing

293

* In many cases there is no stretch available. There are also widow, club, shape and
orphan penalties that can limit the solution space.

* When we look at splitting pages (and boxes) we see (split) top skip kick in. This
is something that we need to provide one way ot the other. And as we have to_
do that, we can as well provide support for bottom skip. A horizontal analogue
is_protrusion, something that also has to be taken into account in a rather dynamic
way, at the beginning or end of the currently analyzed line.

* There is no equivalent of hanging indentation but a shape makes sense. Here the
shape defines heights, top and bottom skips and maybe more in the future. For
that reason we use a keyword driven shape.

* Because we have so called par passes, it made sense to have something similar
for balancing. This gives is the opportunity to experiment with various variables
that drive the process.

* For those who read what we wrote about the par builder, it will not come as sur-
prise that we also added extensive tracing and a callback for intercepting the re-
sults. This makes it possible to show the same detailed output as we can do for
par_passes.

It's about time for some examples but before we come to that it is good to roughly
explain how the page builder works. When the page builder is triggered it will take
elements from the contributions list and add them to the page. When doing that it

keeps track of the height and depth as contributed by boxes and rules. Because it _

will discard glue and kerns it does some checking there. An important feature is that

the depth is added in a next iteration. The routine also needs to look at inserts. The
variables \pagegoal (original \vsize minus accumulated insert heights) and \pagetotal are
compared and when we run over the target height the accumulated stretch and shrink
in_glue (when present) will be used to determine how bad this break is. If it is too

bad, the previous best break will be taken. Penalties can make a possible break more

or less attractive. When the output routine gets a split of page, the total is not re-

liable because we can have backtracked to the previous break. In LuaMetaTgX we have son

In order to make the first lines align properly relative to the top of the page there
is a variable \topskip. The height of the first line is at least that amount. The cor-
rection _is calculated when the first contribution happens: a box or rule.

When we look at the balancer it is good to keep in mind that where the page builder
stepwise adds and checks, the balancer looks at the whole picture. The page builder
does a decent job but is less sophisticated than the par builder. There is a badness

Balancing

294

calculation, penalties are looked at, glue is taken into account but there are no de-
merits.

We want the balancer to work well with column sets that are very much grid based. But
in_getting there we had some hurdles to take. Because the algorithm (like the par
builder) happily results in overfull boxes unless emergency stretch is set, pages can
overflow. When there is no stretch and/or shrink using emergency stretch can give
an_underfull page.

The way out of this is to have non destructive trial passes and decrease the number
of lines. Of course we can get short pages but when for instance it concerns a sec-
tion title that gets moved this is no big deal. In a similar fashion splitting a multi-
line formula is also okay.

* Collect the content in an mvl list and after that's done put the result in a box.

* Set up a balance shape that specifies the slots in in columns (normally a column
is just a blob of text).

* Perform a trial balance run. As soon as an overfull page is seen, adapt the bal-
ance shape and do a new trial run.

* When we're fine, either because we reached the end without overfull column or
by passing the set deadcycles value, quit the trial process and balance the orig-
inal list using the most recent balance shape.

* Flush the result by fetching the topmost from the result split collection and feed
it into _the page flow. The boxed pseudo page will happily trigger the output rou-
tine that in turn construct the final page.

At some point we decided to support multiple mvl streams and therefore changed
the last mentioned step. Because we store the whole column set we can as well also
store the assembled page bodies. This way we can flush different streams into the
same result.

* Flush the result by fetching the topmost from the result split collection and feed
it into _the page flow. Do this for every saved (mvl) stream.

* When we're done, the boxed pseudo pages will be flushed as pages. In the process, for
every page we identify marks.

We are now ready to look at some examples. Here we also show what balance shapes
do. These basically describe a sequence of slots to be filled. The last specification

is used when we exceed the number of defined slots. These are just examples of sim-
ple situations, for real applications more code is needed.

Balancing

295

We start with some content in a box. This can of course be a flushed mvl but here
we just set it directly:

\setbox\scratchboxone\vbox\bgroup
\hsize.30\hsize
\samplefile{tufte}

\egroup

We will split this box in columns. If you are familiar with TgX you might know that a parag

\balanceshape 3
vsize 12\lineheight
topskip \strutht
bottomskip \strutdp

next
vsize 5\lineheight
topskip \strutht
bottomskip \strutdp

next
vsize 8\lineheight
topskip \strutht
bottomskip \strutdp

\relax

\setbox\scratchboxtwo\vbalance\scratchboxone

Contrary to a \parshape, a \balanceshape is not wiped after the work is done. It
also expects keys and values. As with \parpasses each step is separated by next. This
makes it an extensible mechanism. Finally we will split the box according to this shape:

\hbox \bgroup
\localcontrolledendless {%
\ifvoid\scratchboxtwo
\expandafter\quitloop
\else
\setbox\scratchbox\ruledhbox\bgroup
\vbalancedbox\scratchboxtwo
\egroup
\vbox to 12\lineheight \bgroup
\box\scratchbox
\vfill
\egroup

Balancing

\hskiplem
\fi
HNunskip
\egroup

296

The result is shown here:

We _thrive in information-
thick worlds because of our
marvelous and everyday ca-
pacity to select, edit, single
out, structure, highlight, groug
monize, synthesize, focus, or-

ganize, condense, reduce, boil

down, choose, categorize, cat-
alog, classify, list, abstract, scs
into, idealize, isolate, discrim-
inate, distinguish, screen, pi-
geonhole, pick over, sort, in-

’

tegrate, blend, inspect, fil-

ter, lump, skip, smooth, chunk
erage, approximate, clus-

ter, aggregate, outline, sum-

_parizmeigmibarreview, dip

an, look

into, flip through, browse, glar

_amto, leaf through, skim, re-

fine, enumerate, glean, synop-
size, winnow the wheat from
the chaff and separate the
sheep from the goats.

nce

Like the par builder we can end up with overfull boxes but we can deal with that

by using trial runs.

\setbox\scratchboxtwo\vbalance\scratchboxone trial

In that case the result is made from empty boxes so the original is not disturbed. Here
we show an overflow, so in the first resulting box you can compare the height with
the requested one and when it's larger you can decide to decrease the first height

in the shape and try again.

Many readers will skim over
formulas on their first read-
ing of your exposition. There-
fore, your sentences should
flow_smoothly when all but_
the simplest formulas are
replaced by “blah” or some
other grunting noise.

test

Many readers will skim over
formulas on their first read-
ing of your exposition. There-
fore, your sentences should

flow_smoothly when all but

the simplest formulas are
replaced by “blah” or some
other grunting noise.

Of course that involves some juggling of the shape but after all we have Lua at our
disposal so in the end it's all quite doable.

Balancing

297

real target
1 169.89122pt 156.95874pt
65.39948pt 65.39948pt
3 51.17216pt 104.63916pt

Because the balancer can produce what otherwise the page builder produces, we need
to_handle the equivalent of top skip which is what the already shown top keyword

takes care of. This means that the current slice (think current line in the par builder) has
to take that into account. This can be compared to the left- and right protrusion in

the par builder. When we typeset on a grid we have an additional demand.

When we surround (for instance a formula) with halfline spacing, we eventually have

to return on the grid. One complication is that when we are in grid mode and use_

half line vertical spacing, we can end up in a situation where the initial half line space
is on a previous page. That means that we need to use a larger top skip. This is not_
something that we want to burden the balancer with but we have ways to trick it

into taking that compensation into account.

= 3 il

However, when we split in the middle of that segment, we can end up with a half
line skip in a next slot because TgX will remove glue at the edge. So we end up with what

20.4 Forcing breaks

Because the initial application of balancing was in column sets, we also need the abil-

ity to goto a next slot (step in a shape), column (possibly more steps), page (depend-

ing on the page state), and spread (for instance if we are doubles ided). For this we
use \balanceboundary. It takes two values and when the boundary node triggers a
callback in the builder these are passed along with a shape identifier and current

shape slot. That callback can then signal back that we need to try a break here with
a_given penalty. Assuming that at the Lua end we know at which slot we have a slot, col-
umn, page or spread break. Multiple slots can be skipped by multiple boundaries. There
is one pitfall: we need something in a slot in order to break at all, so one ends up

with for instance:

Forcing breaks

298

\balanceboundary 3 1\relax
\vskip\zeropoint
\balanceboundary 3 0\relax
\vskip\zeropoint
\balanceboundary 3 0\relax

Here the 3 is just some value that the callback can use to determine its action (like

goto a next page) and the second value provides a detail. Of course all depends on

the intended usage. By using a callback we can force breaks while not burdening

the engine with some hard coded solution. For example, in ConTgXt we used these (the valt

first second action user interface

1 1 or0 goto next spread (1 initial, O follow up) \page[spread]

2 1 or0 goto next page (idem) \page

3 1or0 gotonext column (idem) \column

4 1 or0 goto next slot (idem) \column[slot]

5 n next slot when more than n lines \testroom[5]

6 S next slot when more than s scaled points \testroom[80pt]
20.5 Marks

It is possible to synchronize the marks with those in the results of balanced segments
with a few Lua helpers that do the same as the page builder does at the start of

a page, while packaging the page and when wrapping it up. So, instead of split marks
we _can have real marks.

20.6 Inserts

Before we go into detail, we want to point out that when implementing a (balancing) mech-
anism as introduced above, decisions have to be made. In traditional TEX there is for instan
TEX and LuaMetaTgX it's (ConTgXt) user demands and challenges that drives what gets impl

Users on the other hand have come up with demands for columns, typesetting on

the grid, multiple notes, balancing, and parallel content streams. The picture we get
from that makes us confident that what we provide is generally enough and as users
understand the issues at hand (maybe as side effect of struggling with solutions) it's
not that hard to explain why constraints are in place. It makes more sense to have

a limited reliable mechanism that deals with the kind of (foot)notes that known users
need than to cook up some complex mechanism that caters potential specific demands_
by potential users. Of course we have our own challenges to deal with, even if the
resulting features will probably not be used that often. So here are the criteria that
make sense:

Marks

299

* We can assume a reasonable amount of notes.

* These are normally small with no (vertical) whitespace.

* Notes taking multiple lines may split.

* But we need to obey widow and club penalties.

* There can be math formulas but mostly inline.

* We need to keep them close to where they are referred from.

But,

* We can ignore complex conflicting demands.

* As long as we get some result, we're fine.

* So users have to check what comes out.

* We don't assume fully automated unattended usage.

And of course:

* Performance should be acceptable.
* User interfaces should be intuitive.
* Memory consumption should be reasonable.

We have users who use multiple note classes so that also has to be handled but again
we _don't need to come up with solutions that solve all possible demands. We can
assume that when a book is published that needs them, the author will operate within
the constraints.

We mentioned footnotes being handled by the page builder so how about them in
these balanced slots? Given the above remarks, we assume sane usage, so for instance
columns that have a single slot with possibly fixed content at the top or bottom (and
maybe as part of the stream). The balancer handles notes by taking their height into
account and when a result is used one can request the embedded inserts and deal
with them. Again this is very macro package dependent. Among the features dealt
with are space above and between a set of notes, which means that we need to iden-
tify the first and successive notes in a class. Given how the routine works, this is

a dynamic feature of a line: the amount of space needed depends on how many in-
serts are within a slot. When we did some extreme tests with several classes of notes
and multiple per column we saw runtime increasing because instead of a few passes
we got a few hundred. In an extreme case of 800 passes to balance the result we
noticed over four million checks for note related spacing. We could bring that down

to one tenth so in the end we are still slower but less noticeable. Here are the helper
primitives for inserts:

<state> = \boxinserts <box>

Inserts

300

\vbalancedinsert <box> <class>
\boxinserts <box>

<box>
<state>

A (foot)note implementation is very macro package dependent so the next example
is just that: an example of using the available primitive. We start by populating a
mvl with a sample text and a single footnote.

\begingroup
\forgetall
\beginmvl
index 5
options \numexpr
\ignoreprevdepthmvloptioncode
+ \discardtopmvloptioncode
\relax
\relax
\hsize .4tw
Line 1 \par Line 2 \footnote {Note 1} \par Line 3 \par
Line 4 \footnote {Note 2} \par Line 5 \par Line 6 \par
\endmvl
\endgroup

We fetch the footnote number, which is one of many possible defined inserts

\cdef\currentnote{footnote}%
\scratchcounter\currentnoteinsertionnumber

The quick and dirty balancer uses a simple shape of 5 lines with normal strut prop-
erties. From the balanced result we take two columns. We test if there is an insert

and take action when there is. Here we just filter the footnotes but there can of course
be more. We overlay these notes over (under) the column that has them. So we work
per column.

\begingroup

\setbox\scratchboxone\flushmvl 5
\balanceshape 1

vsize 51h

topskip 1sh

bottomskip 1sd
\relax
\setbox\scratchboxtwo\vbalance\scratchboxone
\ruledhbox \bgroup

Inserts

301

\localcontrolledrepeat 2 {
\ifnum\currentloopiterator > 1
\hskip2\emwidth
\fi
\setbox\scratchboxthree\vbalancedbox\scratchboxtwo \relax
\ifnum\boxinserts\scratchboxthree > 3
\setbox\scratchboxfour\vbalancedinsert
\scratchboxthree\scratchcounter
\wd\scratchboxfour 0pt

\box\scratchboxfour
\fi
\box\scratchboxthree
H\unskip
\egroup
\endgroup
The result is:
Line 1 Line 428
Line 2?7 Line 5
Line 3 Line 6
27 Note 1 28 Note 2

As we progressed we realized that the ‘balancer’ used in column sets can also be

used for single columns and we can even support a mix of single and multi columns. There
is however a problem: within a mvl we can deal with spacing but we can't do that

reliable across mvl's and especially when we cross a page it becomes hard to iden-

tify if some (vertical) spacing is needed; we don't want it at the bottom or top of

a page. This feature is too experimental to be discussed right now.

We assumed reasonable notes to be used but even if a user tries to keep notes small
and avoid too many, there are cases where they might look like a paragraph and when
there are more in a row, it might be that a column overflows. This is why we have
some support for split notes. This is accomplished by two additional commands:

\setbox\scratchboxone\vbalance\scratchboxone\relax
\vbalanceddeinsert\scratchboxone\relax

Here we convert inserts in such a way that they are taken into account by the bal-
ancer so that multi-slot optimization takes place. Afterwards, when we loop over the
result we can reconstruct the inserts:

Inserts

302

\setbox\scratchboxtwo\vbalancedbox\scratchboxone
\vbalancedreinsert\scratchboxtwo\relax

Among the reasons that these are explicit actions, is that we want to experiment but
also be able to see the effect by selectively enabling it. You can get better results
by forcing depth correction.

\setbox\scratchboxone\vbalance\scratchboxone
\vbalanceddeinsert\scratchboxone forcedepth\relax

This will use the depth as defined by \insertlinedepth which is an insert class spe-
cific parameter, but discussing details of inserts is not what we do here. The reason
for using a \relax in the above examples is that we want to stress that when key-
words_are involved, you need to prevent look-ahead, especially when an \if... or_
expandable loop follows, which is not uncommon when we balance.

It is possible to define top and bottom inserts but of course these need to be filtered
and placed at the TEX end, so this is macro package specific. Here we just mention that it

20.7 Discardables

This is a preliminary explanation.

\begingroup
\beginmvl
index 5
options \numexpr
\ignoreprevdepthmvloptioncode
+ \discardtopmvloptioncode
\relax
\relax
\hsize .4tw
\par
\vskipOpt
{\darkred \hrule discardable height 1sh depth 1sd width lem}
\par
% we need the strut because the rule obscures it .. todo
\dorecurse{8}{\strut Line #1 \par}
\vskip\zeropoint
{\darkblue \hrule discardable height 1sh depth 1sd width lem}
\par

Discardables

303

\endmvl
\endgroup

\setbox\scratchboxone\flushmvl 5
\balanceshape 1

vsize 51h
topskip 1sh % see comment above
bottomskip 1sd
options 3
\relax

\setbox\scratchboxtwo\vbalance\scratchboxone\relax % lookhead

\hpack \bgroup
\localcontrolledrepeat 3 {

\ifvoid\scratchboxtwo\else
\setbox\scratchboxthree\vbalancedbox\scratchboxtwo
\ifvoid\scratchboxthree\else

\dontleavehmode\llap{[\the\currentloopiterator]\quad}%
\ruledhpack{\box\scratchboxthree}\par

\fi
\hskip 4em
\fi
HN\unskip
\egroup
[Line 6
Line 1 Line 7
Line 2 Line 8
Line 3 []
Line 4
[1] Line 5 [2]

When at the top, the rule will be ignored and basically sticks out. When at the bot-

tom the rule might end up in a zero dimension box. With \vbalanceddiscard\scratch-
boxtwo they will become an \nohrule. Basically we're talking of optional content. The optic
set in the shape definition tells if we have a top (1) and/ or bottom (2), here we have both

Discardables

304

I;zne 6
Line 1 Line 7
!%ﬂ'%une 2 Q%ne 8
Line 3
Llne 4 '
[1] Line 5 [2]

Here we actually still have the rule but marked as invisible. So, topskip has a neg-
ative amount. In the next case the remove keyword makes the rule go away in which
case we also adapt the topskip accordingly.

115,987

I;zne 6
Line 1 L{;}ﬂne 7
Llne 2 Ene 8
Line 3
Line 4
[1] Line> [2]

You need to juggle a bit with skips and penalties to get this working as you like. In-
stead of rules you can also use boxes, for example before:

\vskip\zeropoint
\ruledvbox discardable {\hpack{\strut BEFORE}}
\par

and after:

\forgetall \par \vskip\zeropoint

\ruledvbox discardable {\hpack{\strut AFTER}}%
\penalty\minusone % !

\par

It currently is a playground so it might (and probably will) evolve. Although it was
also made for a specific issue it might have other usage.

20.8 Passes

todo

\showmakeup[vpenalty, line]
\balancefinalpenalties 6 10000 9000 8000 7000 6000 5000\relax
\balancevsize 5\lineheight

Passes

305

\setbox\scratchbox\vbox{\dorecurse{l}{\samplefile{tufte}\footnote{!}\par}}
\vbalance\scratchbox

20.9 Passes

In LuaMetaTgX the par builder has been extended with additional features (like orphan, tod

o°

threshold

% tolerance

% looseness

% adjdemerits

% originalstretch

% emergencystretch

% emergencyfactor

% emergencypercentage

20.9 Colofon

Author Hans Hagen

ConTgXt 2025.02.19 14:35
LuaMetaTgX 2.1L07‘20250219
Support www.pragma-ade.com

contextgarden.net
ntg-context@ntg.nl

Passes

306

21 Lines

low level

1EX

lines

307

Contents

21.1 Introduction 307
21.2 Warning 308
21.3 Constructing paragraphs 308
21.4 Subpasses 312
21.5 Definitions 316
21.6 Tracing 318
21.7 Criterion 321
21.8 Examples 321
21.9 Pages 322
21.10Profiles 325

21.1 Introduction

There is no doubt that TgX does an amazing job of “breaking paragraphs into lines” where
a paragraph is a sequence of words in the input separated by spaces or its equiv-

alents (single line endings turned space). The best descriptions of how that is done

can be found in Don Knuths “The TgX Book”, “TgX The Program” and “Digital Typog-

raphy”. Reading and rereading the relevant portions of those texts is a good exer-

cise in humility.

That said, whatever follows here builds upon what Knuth gave us and in no way we
pretend to do better than that. It started out as a side track of improving rendering
math in combination with more control over breaking inline math. It pretty much about
having fun with the par builder but in the end can also help make your results look
better. This is especially true for proze.

Trying to describe the inner working of the par builder makes no sense. Not only

is it kind of complex, riddled with magic constants and heuristics, but there is a good
chance for us to talk nonsense thanks to misunderstanding. However, some curious
aspects will be brought up. Consider what follows a somewhat naive approach and
whatever goes wrong, blame the authors, not TgX.

If you're one of those reader who love to complain about the bad manuals, you can
stop reading here. There is plenty said in the mentioned books but you can also con-
sult Viktor Eijkhouts excellent “TgX by Topic” (just search the web for how the get
these books). If you're curious and in for some adventure, keep reading.

Introduction

308

21.2 Warning

This is a first version. What is described here will stay but is still experimental and
how it evolves also depends on what demands we get from the users. We have de-
fined some experimental setups in ConTgXt. We wil try to improve the explanations in ways

\setupalign[granular]

We will explain below what that means, but let us already now make clear that this

will likely become the default! As far as we can see, due to the larger solution space, the
inter-word spacing is more even but that also means that some paragraphs can be-

come one line less or more.

21.3 Constructing paragraphs
There are several concepts at work when TgX breaks a paragraph into lines. Here we assun

* The spaces between words can stretch or shrink. We don't want that to be too
inconsistent (visible) between two lines. This is where the terms loose and tight
come into play.

* Words can be hyphenated but we don't want that to happen too often. We also
discourage neighboring lines to have hyphens. Hyphenating the (pre) final line is
also sort of bad.

* We definitely don't want words to stick out in the margin. If we have to choose, stretch-
ing is preferred over shrinking. If spaces become too small words, start to blur.

* If needed glyphs can stretch or shrink a little in order to get rid of excessive spac-
ing. But we really want to keep it minimal, and avoid it when possible. Usually
we permit more stretch than shrink. Not all scripts (and fonts for that matter) might
work well with this feature.

* As a last resort we can stretch spaces so that we get rid of any still sticking out
word. When TgX reports an overfull box (often a line) you have to pay attention!

When TgX decides where to break and when to finish doing so it uses a system of penalties
Here we shortly summarize the parameters that play a role in calculating what TgX calls th

\ruledhbox to 20 ts{left \hss right}
\ruledhbox to 40 ts{left \hss right}
\ruledhbox to 5 ts{left \hss right}

Warning

309

\ruledhbox to 5 ts{left right}
\ruledhbox to 5 es{%
left
\hskip 1lts plus 0.5ts\relax
middle
\hskip 1ts plus 1.5ts\relax
rights
}

These boxes show a bit what happens with spacing that can stretch of shrink. The
first three cases are not bad because it's what we ask for with the wildcard \hss. 2°

left right

left right

left right

left middle right

TEX will run over each paragraph at most three times. On each such run, it will choose diff
The process is primarily controlled by these parameters:

* \pretolerance: This number determines the success of the first, not hyphenated
pass. Often the value is set to the plain TEX value of 100. If TgX finds a possible division

* \tolerance: This number determines the success of the second, hyphenated pass. Of-
ten the value is set to the plain TgX value of 200._

* \emergencystretch: This dimension kicks in when the second pass is not success-
ful. In ConTEXt we often set it to 2\bodyfontsize.

When we are (in ConIgXt speak) tolerant, we have a value of 3000, while verytolerant b

We now come to the other relevant parameters. You need to keep in mind that the
demerits are made from penalty values that get squared which is why parameters
with demerits in their name have high values: a penalty of 50 squared has to relate
to_a demerit of 5000, so we might have 2500 + 5000 at some point.

The formula (most often) used to calculate the demerits d is

d=(+b+p)+e

29 We use this opportunity to promote the new ts and es units.

Constructing paragraphs

310

Here [is the \linepenalty, set to 10 in plain, b is the badness of the line, and p is_
the penalty of the current break (for example, added by hyphenation, or by break-

ing an inline formula). The e stands for extra non-local demerits, that do not depend
on_only the current line, like the \doublehyphendemerits that is added if two lines
in a row are hyphenated.

The badness reflects how the natural linewidth relates to the target width and uses

a cubic function. A badness of zero is of course optimal, but a badness of 99 is pretty
bad. A magic threshold is 12 (around that value a line is considered decent). If you
look at the formula above you can now understand why the line penalty defaults to
the low value of 10.

\hyphenpenalty: When a breakpoint occurs at a discretionary this one gets added. In_
LuaMetaTgX we store penalties in the discretionary nodes but user defined \discretiona

\linepenalty: Normally this is set to 10 and it is the baseline for a breakpoint. This
is_ again a small value compared to for instance the penalties that you find in in-

line math. There we need some breakpoints and after binary and relation symbols
such an opportunity is created. The specific penalties are normally 500 and 700. One
has to keep in mind, as shown in the formula above, that the penalties are not
acting on a linear scale when the demerits are calculated. Math spacing and penalty
control is discussed in the (upcoming) math manual.

\doublehyphendemerits: Because it is considered bad to have two hyphens in a

row this is often set pretty high, many thousands. These are treated as demerits
(so outside of the squared part of the above formula).

\finalhyphendemerits: The final (pre last) line having a hyphen is also considered
bad. The last line is handled differently anyway, just because it gets normally flushed
left.

\adjdemerits: lines get rated in terms of being loose, decent, tight, etc. When
two lines have a different rating we bump the total demerits.

\looseness: it is possible to force less or more lines but to what extend this re-
quest _is honored depends on for instance the possible (emergency) stretch in the
spaces (or any glue for that matter). =

It is worth noticing that you can set \lastlinefit such that the spaces in the last
line will be comparable to those in the preceding line. This is a feature that &-TgX brought

The next one is a flag that triggers expansion (or compression) of glyphs to kick in. Those

get added to the available stretch and/or shrink of a line:

Constructing paragraphs

311

* \adjustspacing: Its value determines if expansion kicks in: glyphs basically get
a stretch and shrink value, something that helps filling our lines. We only have
zero, two_and three (and not the pdfIgX value of two): three means ‘only glyphs’ and
two means ‘font kerns and glyphs’.

In LuaMetaTEX we also have:

* \linebreakcriterion: The normal distinction between loose, decent and tight in
TEX uses 12 for 0.5 and 99 for about 1.0, but because we have more granularity (.25) w
get it’, hardly any user will change these values. One can think of the 100 squared
becomes a 10000 (at least this helps relating these numbers) and 10000 is pretty
bad in TgXs perception.

* \adjustspacingstep: When set this one is are used instead of the font bound value
which permits local control without defining a new font instance.

* \adjustspacingstretch: idem.
* \adjustspacingshrink: idem.
* \orphanpenalty: This penalty will be injected before the last word of a paragraph.

e \orphanpenalties: Alternatively a series of penalties can be defined. This prim-
itive expects a count followed by that number of penalties. These will be injected
starting from the end.

The shape of a paragraph is determined by \hangindent, \hangafter, \parshape and
\parindent. The width is controlled by \hsize, \leftskip, \rightskip. In addition
there are \parinitleftskip, \parinitrightskip, \parfillleftskip and \parfill-
rightskip that control first and last lines.

We also have these:
* \linebreakpasses: When set to one, the currently set \parpasses will be applied.

* \parpasses: This primitive defined a set of sub passes that kick in when the sec-
ond pass is finished. This basically opens up the par builder. It is still experimen-
tal and will be improved based upon user feedback. Although it is a side effect
of improving the breaking of extensive mixes of math and text, it is also quite use-
ful for text only (think novels).

In the next sections we will explain how these can improve the look and feel of what
you_typeset.

Constructing paragraphs

312

21.4 Subpasses
In LuaTgX and therefore also in LuaMetaTgX a paragraph is constructed in steps:

* The list of nodes that makes the paragraph is hyphenated: words become a mix-
ture of glyphs and discretionaries.

» That list is processed by a font handler that can remove, add or change glyphs
depending on how glyphs interact. This depends on the language and scripts used.

* The result is fed into the par builder that applies up to three passes as mentioned
before.

In traditional TgX these three actions are combined into one and the overhead is shared. In

Here is an example of a setup. We set a low tolerance for the first pass and second
pass. We can do that because we don't need to play safe nor need to compromise.

\pretolerance 75
\tolerance 150

\parpasses 3
threshold 0.025pt
classes \indecentparpassclasses
tolerance 150
next
threshold 0.025pt
classes \indecentparpassclasses
tolerance 200
emergencystretch .25\bodyfontsize
next
threshold 0.025pt
classes \indecentparpassclasses
tolerance 200
optional 1
emergencystretch .5\bodyfontsize
\relax

\linebreakpasses 1

Because we want to retain performance we need to test efficiently if we really need
the (here upto three) additional passes, so let's see how it is done. When a pass list

is defined, and line break passes are enabled, the engine will check after the second pass i

Subpasses

313

* overflow : the maximum value found, this is something really bad.

* underflow : the maximum value found, this is something we can live with.

* verdict : what is the worst badness of lines in this paragraph.

» classified : what classes are assigned to lines, think looseness, decent and tight.

There are two cases where the engine will continue with the applying passes: there
is an overflow or there is a verdict (max badness) larger than zero. When we tested

this on some large documents we noticed that this is nearly always true, but by check-
ing we save a few unnecessary passes.

Next we test if a pass is really needed, and if not we check the next pass. When

a pass is done, we pick up where we left, but we test for the overflow or badness
every sub pass. The next checks make us run a pass:

* overfull exceeds threshold
* verdict exceeds badness
» classified overlaps classes

Here threshold, badness and classes are options in a pass section. Which test makes
sense depends a bit on how TgX sees the result. Internally TgX uses numbers for its classifi

indecent almostdecent loose tight

1 veryloose + + +

2 loose + + +

4 semiloose + +

8 decent
16 semitight + +
32 tight + + +

The semiloose and semitight values are something LuaMetaTgX. In ConTEXt we have these f

The sections in a par pass setup are separated by next. For testing purposes you

can add skip and quit. The threshold tests against the overfull value, the badness against
the verdict and classes checks for overlap with encountered classes, the classifica-

tion.

You can specify an identifier in the first segment that then will be used in trac-
ing but it is also passed to callbacks that relate to this feature. Discussing these call-
back is outside the scope fo this wrapup.

Subpasses

314

You need to keep in mind that parameters are not reset to their original values be-

tween two subpasses of a paragraph. We have tolerance and emergencystretch which

are handy for simple setups. When we start with a small tolerance we often need

to bump that one. The stretch is likely a last resort. The usual demerits can be set

too: doublehyphendemerits, finalhyphendemerits and adjdemerits. We have extrahy-
phenpenalty that gets added to the penalty in a discretionary. You can also set linepenalt
to_a different value than it normally gets.

The looseness can be set but keep in mind that this only makes sense in very spe-

cial cases. It's hard to be loose when there is not much stretch or shrink available. The
linebreakcriterion parameter can best be left untouched and is mostly there for_
testing purposes.

The LuaMetaTgX specific orphanpenalty gets injected before the last word in a paragraph.

The next four parameters are related to expansion: adjustspacing, adjustspacing-
step, adjustspacingshrink and adjustspacingstretch. Here we have several sce-
narios.

* Fonts are set up for expansion (in ConIgXt for instance with the quality specifier). When
* When we don't enable it, the par pass can do it by setting adjustspacing (to 3).

* When the other parameters are set these will overload the ones in the font, but
used with the factors in there, so different characters get scaled differently. You
can set the step to one to get more granular results.

* When expansion is not set on the font, setting the options in a pass will activate expansi

When a font is not set up to use expansion, you can do something like this:

\parpasses 6
classes \indecentparpassclasses
threshold 0.025pt
tolerance 250
extrahyphenpenalty 50
orphanpenalty 5000

% font driven
next ifadjustspacing

threshold 0.025pt

classes \tightparpassclasses
tolerance 300

adjustspacing 3

Subpasses

315

orphanpenalty 5000
next ifadjustspacing

threshold 0.025pt

tolerance 350

adjustspacing 3

adjustspacingstep 1

adjustspacingshrink 20
adjustspacingstretch 40

orphanpenalty 5000
emergencystretch .25\bodyfontsize

% otherwise, factors 1000

next
threshold 0.025pt
classes \tightparpassclasses
tolerance 300
adjustspacing 3
adjustspacingstep 1

adjustspacingshrink 10
adjustspacingstretch 15

orphanpenalty 5000
next

threshold 0.025pt

tolerance 350

adjustspacing 3

adjustspacingstep 1

adjustspacingshrink 20
adjustspacingstretch 40

orphanpenalty 5000
emergencystretch .25\bodyfontsize
% whatever
next
threshold 0.025pt
tolerance 3000
orphanpenalty 5000
emergencystretch .25\bodyfontsize
\relax

With ifadjustspacing you ignore steps that expect the font to be setup, so you don't
waste time if that is not the case.

Subpasses

316

There is also a callback parameter but that one is experimental and used for spe-
cial purposes and testing. We don't expect users to mess with that.

A really special feature is optional content. Here we use as example a quote from
Digital Typography:

Many readers will skim over formulas on their first reading of your
exposition. Therefore, your sentences should flow smoothly when all but
the simplest formulas are replaced by \quotation {blah} or some other
\optionalword {1} {grunting }noise.

Here the grunting (with embedded space) is considered optional. When you set \line-
breakoptional to1l this word will be typeset. However, when you set the pass pa-
rameter linebreakoptional to O it will be skipped. There can be multiple optional
words with different numbers. The numbers are actually bits in a bit set so plenty

is possible. However, normally these two values are enough, if used at all.

21.5 Definitions

The description _above is rather low level and in practice users will use a bit higher
level interface. Also, in practice only a subset of the parameters makes sense in gen-
eral usage. It is not that easy to decide on what parameter subset will work out well

but it can be fun to play with variants. After all, this is also what TgX is about: look, feel a:

Some users praise the ability of recent TEX engines to provide expansion and protrusion. Tt
MetaTgX that normally can be neglected), it also makes the output files larger. Some find it

The traditional (MkIV) way to set up expansion is to add this to the top of the doc-
ument, or at least before fonts get loaded.

\scratchcounter 1

\bgroup
\advance\scratchcounter 1
\egroup
\the\scratchcounter

and later on to enable it with:
\setupalign[hz]

However, par passes make it possible to be more selective. Take the following two
definitions:

Definitions

317

\startsetups align:pass:quality:1

\pretolerance 50
\tolerance 150
\parpasses 6
identifier
threshold
tolerance
next
threshold
tolerance
next
threshold
tolerance
next
classes
tolerance

emergencystretch
next ifadjustspacing

classes
tolerance
adjustspacing

emergencystretch

next
threshold
tolerance

emergencystretch

\relax
\stopsetups

\parpassidentifier{quality:1}
0.025pt
175

0.025pt
200

0.025pt
250

\almostdecentparpassclasses
300
.25\bodyfontsize

\indecentparpassclasses
300

3
.25\bodyfontsize

0.025pt
3000
2\bodyfontsize

\startsetups align:pass:quality:2

\pretolerance 50
\tolerance 150
\parpasses 5
identifier
threshold
tolerance
next
threshold
tolerance
next

\parpassidentifier{quality:2}
0.025pt
175

0.025pt
200

Definitions

318

threshold 0.025pt
tolerance 250
next ifadjustspacing
classes \indecentparpassclasses
tolerance 300
adjustspacing 3
emergencystretch .25\bodyfontsize
next
threshold 0.025pt
tolerance 3000
emergencystretch 2\bodyfontsize
\relax
\stopsetups

You can now enable one of these:
\setupalignpass[quality:1]

The result is shown in figure 21.1 where you can see that expansion is applied selectively; -

21.6 Tracing

There are several ways to see what goes on. The engine has a tracing option that
is set with \tracingpasses. Setting it to 1 reports the passes on the console, and
a value of 2 also gives some details.

There is a also a tracker, paragraphs.passes that can be enabled. This gives a bit

more information:

\enabletrackers[paragraphs.passes]
\enabletrackers[paragraphs.passes=summary]
\enabletrackers[paragraphs.passes=details]

If you want to see where expansion kicks in, you can use:
\showmakeup[expansion]

This is just one of the options, spaces, penalties, glue are are useful when you play
with passes, but if you are really into the low level details, this is what you want:

\startnarrower[5*right]
\startshowbreakpoints[option=margin,offset=\dimexpr{.5\emwidth-\rightskip}]

Tracing

We.thrivesinsinformation-thick.worlds.be-
cause:of-oursmarvelous:,and.everyday:capac-
itystosselect,sedit ssingle.out sstructure shigh-
light,«group,«pair,=merge,=harmonize,=syn-
thesize,«focus,=organize,=condense,s=reduce,
boil.down,schoose,scategorize,scatalog,sclas-
sify,«list,=abstract,«scan,=look.into,«idealize,
isolate,:discriminate,«distinguish sscreen,«pi-
geonhole,=picksover,=sort,=integrate,«blend,
inspect,filter,«lump,e«skip,ssmooth,=chunk,
average,-approximate .cluster aggregate out-
line,ssummarize,=itemize,sreview, =dipsinto,
flip.through, sbrowse,sglance.dntoleafithrough,
skim,=refine,=enumerate,«glean,=synopsize,
winnowsthe.wheat.from.the.chaff.and.sepa-
ratesthessheepsfrom.the.goats.

none

We . thrive » in» information-thick . worlds
because«of -our«marvelous«and«everyday
capacitystosselect sedit,ssingle.out sstructure,
highlight,=group,=pair,smerge,=harmonize,
synthesize,«focus,=organize,=condense,=re-
duce,=boil-down.«choose,scategorize scatalog,
classify,«list,«abstract,=scan,slook-into,sideal-
ize sisolate,«discriminate,.distinguish,sscreen,
pigeonhole,«pick-over,ssort,.integrate,«blend,
inspect,«filter,«lump,«skip,«smooth,«chunk,
average,=approximate,«=cluster,-aggregate,
outline,=summarize,«=itemize,=review,=dip
into,«flipsthrough «browse,«glance.into,«leaf
through,=skim =refine,=enumerate,=glean,
synopsize,swinnowsthe.wheat.from.the.chaff
and.separatesthessheep.from.the.goats.

quality:1

We . thrive « in « information-thick . worlds
becausesof-our«marvelous-and.everyday
capacitystosselect sedit,ssingle.out sstructure,
highlight,«=group,=pair,=merge,<harmonize,
synthesize,«focus,=organize,=condense,=re-
duce,=boil.down,.choose,scategorize scatalog,
classify,slist sabstract,sscan slooksinto,sideal-
izesisolate sdiscriminate,«distinguish,sscreen,
pigeonhole spick-over,ssort,«integrate,«blend,
inspect,sfilter,«lump,«skip,=smooth,=chunk,
average,=approximate,=cluster,=aggregate,
outline,=summarize,«itemize,=review,=dip
into,«flip-through,«browse,sglancesinto,sleaf
through,«=skim,«refine,=enumerate,«glean,
synopsize,swinnowsthe.wheatsfrom.theschaff
and.separatesthe.sheep.from.the.goats.

quality:2

319

Westhrivesinsinformation-thick.worlds«because
of coursmarvelous.and.everyday.capacity«toese-
lect sedit,ssinglesout sstructure,<highlight «group,
pair,=merge,sharmonize,=synthesize,«focus,=orga-
nize,=condense,sreduce,sboilsdown,schoose,scate-
gorize,=catalog,s=classify,«list,«abstract,=scan,=look
into,=idealize,=isolate,«discriminate,=distinguish,
screenspigeonhole :pickiover ssort sintegrate,blend,
inspect,«filter,«lump,=skip,«smooth «chunk,=av-
erage,=approximate,«cluster,=aggregate,«outline,
summarize sitemize sreview sdips;intosflip,through,
browse,=glance-into,=leaf.through =skim =refine,
enumerate,=glean,«synopsize,swinnowsthe.wheat
fromsthe.chaff.and.separate.thessheep.from.the
goats.

none

Westhrivesin-information-thick-worlds.becausesof
oursmaryvelous-and-everyday=capacitystosselect,
edit ssinglesout,sstructure,shighlight «group,«pair,
merge,=harmonize,=synthesize «focus,=organize,
condense,=reduce,=boil.down,=choose,=catego-
rize,«catalog,«classify,«list,=abstract,sscan,«look
into,«idealize,«isolate,«discriminate,«distinguish,
screen,=pigeonhole, «pick.over,«sort,«integrate,
blend sinspect,sfilter «lump,sskip,ssmooth,schunk,
average,=approximate,scluster,-aggregate,soutline,
summarize, sitemize review «dipsinto,sflip.through,
browse,sglance-into,«leaf-through,=skim «refine,
enumerate,sglean ssynopsize,swinnow.the.wheat
fromsthe.chaff.and.separatesthe.sheep«from.the
goats.

quality:1

Westhrivesin.information-thick.-worldssbecausesof
oursmaryvelous-and-everyday=capacitys-tosselect,
edit,ssingle.out,=structure,shighlight,«group,«pair,
merge,«harmonize,«synthesize,«focus,«organize,
condense,=reduce,«boil-down,«choose,«catego-
rize,=catalog,=classify,slist,=abstract,=scan,=look
into,=idealize,sisolate,«discriminate,«distinguish,
screen,=pigeonhole,«pick=over,=sort,=integrate,
blend,sinspect,«filter,«lump,eskip,ssmooth,.chunk,
average,sapproximate,scluster,-aggregate outline,
summarize,sitemize,sreview sdipsinto,«flip-through,
browse,sglance.into,«leafsthrough «skim,.refine,
enumerate,sglean =synopsize,swinnowthe.wheat
fromsthe.chaff.and.separate-the.sheep:«from.the
goats.

quality:2

Westhrivesinsinformation-thicksworlds.becausesof-our-marvelous
and.everyday-capacitystosselect,sedit esinglesout,sstructure,shigh-
light ,sgroup,=pair,smerge,sharmonize,ssynthesize,sfocus,sorganize,
condense,sreduce,«boil.down,=choose,=categorize,«catalog,«classify,
list,=abstract,sscan,=looksinto,«idealize,«isolate,«discriminate,«dis-
tinguish,sscreen =pigeonhole,=pick-over =sort «integrate,=blend,=in-
spect,efilter,«lump,eskip,«smooth,«chunk,-average,«approximate,
cluster,saggregate,-outline,ssummarize,=itemize,sreview,«dipsinto,
flip.through,<browse,«glance.into,«leaf.through «skim.refine«enu-
merate,«glean,ssynopsize swinnowsthe.wheat.fromsthe.chaff.and
separatesthe.sheepsfrom.the.goats.

none

Westhrivesinsinformation-thicksworlds.becausesofsoursmarvelous
and.everyday=capacitystosselect,zedit =singlesout,sstructure «high-
light ,sgroup,spair,smerge,sharmonize,ssynthesize,sfocus,sorganize,
condense sreduce,sboil.down,zchoose zcategorize scatalog,sclassify,
list,=abstract,sscan,=looksinto,«idealize,«isolate,«discriminate,=dis-
tinguish,=screen,«pigeonhole,=picksover,«sort,«integrate,«blend,«in-
spect,efilter,«lump,=skip,«smooth,«chunk,-average,«approximate,
cluster,saggregate,soutline ssummarize,«itemize «review,«dipsinto,
flipsthrough,=browse,sglance.into,sleaf.through,sskim,srefine senu-
merate,=glean,«synopsize,swinnow.the.wheat:fromsthe.chaffsand
separatesthe.sheep.from.the.goats.

quality:1

Westhrivesinsinformation-thick.worlds.becausesof-our«marvelous
andseverydayscapacitystosselect,sedit,ssinglesout sstructure,shigh-
light,sgroup,spair,smerge,«harmonize,ssynthesize «focus,-organize,
condense sreduce,sboil.down,zchoose zcategorize scatalog,sclassify,
list,=abstract,=scan,=looksinto,«idealize,«isolate,«discriminate,«dis-
tinguish,escreen,«pigeonhole,spicksover,«sort «integrate,«blend,«in-
spect,sfilter,«lump,=skip,=smooth,schunk,-average,sapproximate,
cluster,saggregate,=outline,ssummarize,sitemize,sreview,=dipsinto,
flipsthrough,«browse,sglance.into,sleaf.through,sskim,srefine, «enu-
merate,=glean,ssynopsize,swinnowsthe.wheat.from.the.chaffsand
separatesthe.sheep.from.the.goats.

quality:2

Figure 21.1 Two different passes applied to tufte.tex.

Tracing

320

\samplefile{tufte}
\stopshowbreakpoints
\stopnarrower

We thrive in information-thick worlds because of our marvelous and s o s g o e
leveryday capacity to select, edit, single out, structure, highlight, group,~pairy-merge;-har-
Imonize, synthesize, focus, organize, condense, reduce, boil down, choose; gat-wmw wwwm
egorize, catalog, classify, list, abstract, scan, look into, idealize, isolate;-@ig-« o wm um
kcriminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend;:in-www
bpect, filter, lump, skip, smooth, chunk, average, approximate, cluster, @ges -«
lpregate, outline, summarize, itemize, review, dip into, flip through, browse;-glance -
into, leaf through, skim, refine, enumerate, glean, synopsize, Winnow s s i oo
khe wheat from the chaff and separate the sheep from the goats.

From 555 b=10001

) (0pt) fron s=6 b=10001

09] b=0 d=7.50644pt, p=1.562 r=7.506 (dt=0) (Opt) from s=9 b=0

You can see the chosen solutions with

\showbreakpoints[n=1]

1 1 0 10001 O verytight disc
2 2 1 10001 O verytight disc
3 3 2 10001 O verytight disc
4 4 3 10001 O verytight disc
5 5 4 10001 O verytight disc
6 6 5 10001 O verytight disc
7 7 6 10001 O verytight disc
8 8 7 10001 O verytight disc
1

21

3 21

4 321

5 4321

6 54321

7 654321

8 7654321

pass : 3 demerits : 0
subpass : T looseness : 0

subpasses : 0

When we started playing with the par builder in the perspective of math, we side
tracked and ended up with a feature that can ge used in controlled situations. Cur-
rently we only have a low level ConTgXt interface for this (see figure 21.2).

The Earth, as a habitat for animal life, is
in old age and has a fatal illness. Several,
in fact. It would be happening whether hu-
mans had ever evolved or not. But our pres-
ence is like the effect of an old-age patient
who smokes many packs of cigarettes per
day—and we humans are the cigarettes.

\tracinglousiness 1 \lousiness 0

The Earth, as a habitat for animal life, is
in old age and has a fatal illness. Several,
in fact. It would be happening whether hu-
mans had ever evolved or not. But our pres-
ence is like the effect of an old-age patient
who smokes many packs of cigarettes per
day—and we humans are the cigarettes.

\lousiness 1 11 0

The Earth, as a habitat for animal life, is
in old age and has a fatal illness. Several,
in fact. It would be happening whether hu-
mans had ever evolved or not. But our pres-
ence is like the effect of an old-age patient
who smokes many packs of cigarettes per
day—and we humans are the cigarettes.

\silliness 11

Figure 21.2 Influencing the way TgX breaks lines applied to ward. tex.

Tracing

321

21.7 Criterion

The granular_alignment option will configure the linebreakcriterion to work with 0.25 steps
instead_of 0.50 steps which means that successive lines can become a bit closer in
spacing. There is no real impact on performance because testing happens anyway. In
figure 21.3 you see some examples, where in some it indeed makes a difference.

1sewofwoursmar- Westhrivesinsinformation-thickeworldssbecausemofsoursmar-

Westhrivesinsinformation-thicksworldssbecausesofsoursmar- Weathrivesinsinformation-thickeworldssbecs
inglesout mstruc- veloussandseverydayscapacitystosselect sedit singlesout wstruc- veloussandseverydayscapacitystosselect sedit msinglesout wstruc

veloussandseverydayscapz

ture,shighlight sgroup,spair smerge,sharmonize ssynthesize,sfo- ture,shighlight sgroup spair,smerge sharmonize ssynthesize,«fo- tureshighlight.sgroup.spairsmerge sharmonize ssynthesize sfo-

cus,zorganize,scondense sreduce,sboilsdown schoose scategorize, cus,gorganizescondensesreduce sboiladown schoose scategorize, cusgorganizescondensegreduce gboiladown schoose scategorize

catalog aclassify,alist wabstract sscan slooksinto sidealize isolate, catalog sclassify.alist sabstract,sscan slooksinto sidealize sisolate, —catalog.sclassify.alistsabstract sscan slooksinto sidealize sisolate,
discriminate mdistinguish,mscreen mpigeonhole,mpicksover,msort, discriminate,=distinguish,sscreen spigeonhole spicksover ssort, discriminate wdistinguish mscreen mpigeonhole mpicksover msort
integrate,mblend minspect mfilter,mlump, mskip,msmooth,mchunk, integrate,mblend,=inspect mfilter mlump mskip,msmooth,mchunk, integratemblend minspect mfilter mlump mskip msmooth mchunk
average,sapproximate cluster saggregate woutline wsummarize, average sapproximate acluster saggregate soutline,ssummarize, averagewapproximate scluster waggregate woutline summarize,
itemize areview adipsinto,sflipsthrough sbrowse sglancesintosleaf itemize areview adipsinto sflipsthrough sbrowse sglancesinto gleaf itemize areview adipsinto.sflipsthrough sbrowse sglancesinto sleaf
through sskim srefine senumerate sglean ssynopsize swinnowsthe —through sskim srefine senumerate sglean ssynopsize swinnowsthe —through sskim srefine senumerate sglean ssynopsize swinnowathe
wheatsfromastheschaffsandsseparatesthessheepsfromsthesgoats. ~ wheatsfromstheschaffsandsseparatesthessheepsfromsthesgoats. wheatsfromstheschaffsandsseparatesthessheepsfromsthesgoats

Westhrivesindnformation-thickeworldssbecausesofsoursmarvelous Westhrivesindinformation-thicksworldssbecausesofioursmarvelous Westhrivesinainformation-thicksworldssbecausesofsoursmarvelous
andweverydaymcapacitymtosselect,medit,msinglemout mstructure, andseverydaymcapacitystosselect medit,msinglesout,mstructure, andseverydayscapacitymtosselect medit msinglesout mstructure,
highlight sgroup,spair,smerge,sharmonize ssynthesize sfocuswor- highlight,sgroup spair,smerge sharmonize ssynthesize sfocusgor- highlight wgroup apairemerge.sharmonize gsynthesize sfocus,aor-

ganize,mcondense mreduce,mboilsdown,mchoose,mcategorize,mcat- ganizemcondense zreduce,=boiladown,=choose,=categorize,mcat- ganize mcondense.mreduce mboilsdown mchoose mcategorize mcat

alog,mclassify can,mlooksinto,midealize,misolate, alog,mclassif t,mabstract,mscan,mlooksinto,sidealizemisolate, alog,mclassify,mlist,mabstract mscan mlooksinto,midealize misolate
discriminate en,mpigeonhole,mpicksover,msort, discriminate,mdistinguish,mscreen mpigeonhole,=picksover,msort, discriminate mdistinguish.mscreen,mpigeonhole mpicksover msort
integrate mblend,minspect mfilter mlump, mskip,msmooth,mchunk, integrate mblend minspect,mfilter wlump, mskip,msmooth,mchunk, integrate.mblend minspect mfilter mlump mskip msmooth mchunk,
average mapproximate mcluster,saggregate,moutline msummarize, averagewapproximate scluster,saggregate =outline ssummarize, average sapproximate sclustermaggregate moutline ssummarize

sadipainto sflipsthrough sbrowse sglancesintosleaf itemize greview sdipsinto sflipsthrough abrowse sglancesinto,aleaf

sdipsinto sflipsthrough wbrowse sglancesinto sleaf itemize srevie

itemize srevie

through sskim srefine senumerate sglean ssynopsize swinnowsthe —through sskim srefine senumerate sglean ssynopsize swinnowsthe through sskim srefine genumerate sglean ssynopsize swinnowsthe
wheatafromstheschaffsandsseparatesthessheepsfromsthesgoats. wheatsfromstheschaffsandsseparatesthessheepsfromsthesgoats. wheatsfromstheschaffsandsseparatesthessheepsfromsthesgoats

‘Westhrivesinsinformation-thicksworldssbecausesofsoursmarvelous Westhrivesinsinformation-thicksworldssbecausesofsoursmarvelous Westhrivesinsinformation-thicksworldssbecausesofsoursmarvelous
andseverydayscapacitystosselect sedit ssinglesout sstructure ghigh- andseverydayscapacitystosselect sedit ssinglesout sstructure shigh- andseverydayscapacitystosselect gedit asinglesout sstructure ghigh
light sgnonpeppin saergashahmonize ssyashesizeifogtis gosgaonize; light sgroup spair wmerge sharmonize ssynthesize sfocus gorganize, light.mgroup mpair merge wharmonize msynthesize mfocus morga-
contdensedaodugeabuitsslovihdohoosel; i talogiclag: condense,sreducemboiledown schoosemcategorize mcatalogmclas- nizemcondensewreduce mboiladown mchoose mcategorize mcatalog

sifisslistedabsirhet mscarsdonldintloiideadidealsolateqidiscriiiinate; — sifyslist sabstract sscan slooksintosidealize sisolate sdiscriminate, classifyslist.sabstract sscan.slooksinto.sidealize sisolate sdiscrim
distingiishugciebnespigeonholeapicksoneicisortciintepratetdolentd, distinguish,sscreen spigeonhole spicksover ssort sintegrate sblend, inateadistinguishsscreen.spigeonhole spicksover ssort sintegrate,
bispeciiafibier wliinep miskimmsinpoiinaxehiinkohavérageaappioni- inspect,mfilter mlump mskip,msmooth,mchunk
patdmclustet s ggenategont inedsuranarireuitenaizelaieview; mate mcluster maggregate moutline msummarize,sitemize,sreview, proximatescluster maggregate woutline ssummarize witemize mre-
dipeintbjdipethfionghebroivstieglancegintosleafetbirodgheskith, dipsinto,sflipsthrough,sbrowse,zglancesinto,zleafsthrough sskim, view sdipsinto=flipsthrough,abrowse sglancesinto,=leafathrough
stfinewenfinnaratengleate wy opsiceawinnonsthemwheatifrowlthe refine senumerate sglean ssynopsize swinnowstheswheatsfromsthe —skim mrefine menumerate mglean msynopsize mwinnowstheswheat

average,mapproxi- blend sinspect mfilter mlump sskip,ssmooth schunk saverage wap

thaffstincsdepbrat dethessheepiranlthpafontst hesgoats chaffsandsseparatesthessheepsfromathesgoats romstheschaffsandsseparatesthessheepsfromathesgoats

Westhrivesinsinformation-thickeworldssbecausesofsoursmarvelous Westhrivesinsinformation-thickeworldssbecausesofsoursmarvelous Westhrivesinsinformation-thickeworldssbecausesofsoursmarvelous
andseverydayscapacitystosselect sedit ssinglesout astructure shigh- andseverydayscapacitystosselect wedit ssinglesout wstructure shigh- — andseverydayscapacitystosselect gedit gsinglesout sstructure ghigh-
light sgroup spair smerge,sharmonize ssynthesize sfocus sorganize, light sgroup spair smerge sharmonize ssynthesize sfocus gzorganize, light sgroup pairsmerge sharmonize ssynthesize sfocus gorganize

condense mreduce,mboilsdown,mchoose mcategorize,mcatalog,aclas- condense sreduce,=boiladown mchoose mcategorize mcatalogmclas- condensemreduce mboiladown, schoose mcategorize mcatalog mclas-

sify,alist wabstract mscan slooksinto,sidealize sisolate adiscriminate, sify.alist sabstract sscan slooksintosidealize gisolate gdiscriminate, — sify,alist sabstract sscan.slooksintosidealize gisolate sdiscriminate
distinguish,sscreen apigeonhole apicksover ssort mintegrate,gblend, —distinguish,sscreen gpigeonhole gpicksover ssort sintegrate,sblend, — distinguishsscreen apigeonholespicksover gsort sintegrate.sblend
inspect filter slump uskip ssmooth schunk saverage sapproximate, inspect sfilter slump sskip,ssmooth schunk saverage sapproximate, inspect.afilteralump askipssmoothschunk saverage sapproximate
cluster saggregate soutline ssummarize sitemize sreview adipsinto, cluster saggregate soutline ssummarize sitemize areview adipsinto, —cluster saggregate goutline ssummarize gitemize areview adipsinto
flipsthrough sbrowse sglancesinto sleafsthrough sskim arefinesenu- flipsthrough.sbrowse aglancesinto sleafsthrough sskim arefinesenu- flipsthrough abrowse aglancesinto sleafsthrough askim srefine senu-
merate,sglean,asynopsize swinnowstheswheatsfromstheschaffaand merate,sglean ssynopsize swinnowstheswheatsfromstheschaffsaand = merate aglean ssynopsize awinnowstheswheatafromstheschaffaand
separatesthessheepsfromsthesgoats. separatesthessheepsfromsthesgoats. separatesthessheepafromasthesgoats

Figure 21.3 More granular interline criteria.

21.8 Examples
The ConTgXt distribution comes with a few test setups: spac-imp-tests.mkxl. Once we havi

Currently we provide the following predefined passes that you can enable with \se-
tupalignpass: decent, quality, testl, test2, test3, test4, test5. We hope that_
users are willing to test these.

Criterion

322

21.9 Pages

While the par builder does multiple passes, the page builder is a single pass progres-
sive routine. Every time something gets added to the (so called) main vertical list

the page state gets updated and when the page overflows what has been collected
gets passed to the output routine. It is to a large extend driven by glue (with stretch
and shrink) and penalties and when content (boxes) is added the process is somewhat
complicated by inserts as these needs to be taken into account too.

You can get pages that run from top to bottom by adding stretch between lines but
by default in ConTgXt we prefer to fill up the bottom with white space.

It can be hard to make decisions at the TgX end around a potential page break because in_

Penalties play an important role and because these are used to control for instance
widows_and clubs high values can lead to underfull pages so if we want to influence
that we need to cheat. For this we have three experimental mechanisms:

* tweaking the page goal: \pageextragoal
* initializing the state quantities: \initialpageskip
* adapting the state quantities as we go: \additionalpageskip

The first tweak is for me to play with, and when a widow or club is seen the extra
amount can kick in. This feature is likely to be replaced by a more configurable one.

The second tweak lets the empty page start out with some given height, stretch and
shrink. This variable is persistent over pages. This is not true for the third tweak: it
kicks in when the page gets initialized or as we go, but after it has been applied the value

Adapting the layout (within the regular text area) is done with \setpagelooseness
an_demonstrated in figure 21.4 and figure 21.5. Possible parameters are lines, height, str

Srror

Figure 21.4 Cheating with
page dimensions: [lines=2].

It is not that trivial to fulfill the wide range of user demands but over time the \se-
tupalign commands has gotten plenty of features. Getting for instance windows and
clubs right in the kind of mixed usage that is common in ConTgXt is not always easy. One c

The examples in figure 21.6, 21.7 and 21.8 scale vertically in order ti fill up the text area;

Pages

323

Figure 21.6 Cheating with vertical expansion: [vz=no].

There are a few other tweaks but these one can wonder about these. We can add

stretch and shrink to the baseline skip, something that can also be triggered with

the ‘spread’ option to \setupalign, assuming that also height is given). An alterna-

tive is to permit an extra line and accept a visual overflow, assuming that the lay-

out is set up to make sure that the footer line doesn't overlap. None of this guaran-

tees that a whole document with plenty of graphics and special constructs will come

out well, but for text only it might work okay. Figures 21.9, 21.10 and 21.11 show _some of

Pages

324

e, o, g o mu.m.m g o e, i o e i o s o oot i e, ot o, b, g, e . i, s, <] oncw e e 1 umwwww i s o e
o i e, . v, b e, cht, gt oo, e i i i bt 1k woes s of ot st o ey o] Erace sppsimie hir, serogae, o, s, s, i e i i i 1 e e o el oy i
o ety hmmiony ey .k, i, g oo, stencute, MgHIE, Ep, P, e, bamoni, e ‘ . ket i, o ot e, b, o, e, . Syl
o it el e . T, 1 e e o o, et bl o, e, e, o, o o e o 1 <hall st 1 o o i, i, i, o o, o, o i, o]
H it .o s, e, i, 1) i o ki, e, e, S, S o S T
b 5 i ot ik v, et e, Wi apct, ke, b s smtckhy s ol e, gl ot sonctae, Hghhg. sonp. . . ot o el g e . .
oo b o e il et e s o e S e e it St e o i, e by) T ptiocrivige e ot s APt cite, e, ko, i s, v, i]
— - i i L irck, s bk it sl bt e, e, e, Bl oo v, . i e, .
el e, L, T, e, e, e i o a mm,‘ (Mw.mw iy ool ik e, ek, fste, Wi epct, A, e i, s, | P e o s e e e
. ek, bk ey e, ikt A, cnpueh, e, Y L e et o e i i e e i i g brova, et o, s, e, e, o, YR i, . e o, L, s, o e, b, i
ek ek . it el . e i, i b, . e e e, i i, o o e et e v o s L e, oo . ot e e, et i,]
e s . e, e, ok e, o, st s, ang i b o] o S i e o Tingi, en B
s e p i, e v, ot i, . g, s, . . L,.m o s, g “, B L e i, ik ., i, el gt i 4‘.‘,‘,”\‘.‘”,.“
" . u‘{m of our marw et i o) vonsh, ki, e v i abtrct, s oo e, ealae, olte, st dsioguih, e it o o,
Sk e, ngh o stractore, b, 90D, i, e e, i o b T e o s (e e o e i ik o, e, D, o, ey, e, . . s, o 1 heut o s et 1 4 o 1 G
T b, . o o, e, S e bt i et e iy o s
e b i, b, e o o e e o o o e el s e o oy 13
B e e m.w. i ot o Sk ik o o, i, . s g . o, o i > W e i ook s oo o s vy il
o e whet o e chall e e sy (e e e e, e, ol i, i, i, it b e 3 e, i, sngnou, e, Hghig, B P, s, b, .
e i i vl e o v “;*““, et i, o i e, D e ol i e ., . . e i, i e e e e)
o o ,Iiw‘m,“i o e, ok dovn e, ot s oy i e e s b . o, it L o o, g i, oy el o B e et . i
e e T e e it v et b e | ek v, e e -m‘m i . b, ‘w;nﬂwmm‘wm b, it
i e, i o i i, ot g, ir o, onganie, o e o, chta, g, e, oot it b e i b o i, e, et s o et “:“;:,‘,“’,‘,“‘,:;,}ilt,‘ ;i‘;;;;";;;;yy;:;yuv'h;‘:‘yl‘;ngﬂ-;;;
i e et o the e e s o the s - ;‘;;}':\7‘“ L b e sl e i i :‘ e e o i o ey | T i, i, i o o, o, o i, |
- N e P S it sngh vvumvr \)\;)\Ui o, o, e assnonize, synthe . .dnuu S, vobote Amummu m\m ish, screen, pi
i e i ot 1k wokd ot of o vl e vy sch) e, e, e, st e, s, e, n i o el i, e . s, Wb, oy, pis, . B, e . st o, bk ik i ki, Gt ki e,
ik, ik, dnghe out, irmoker, Lighlgit, grow, pals mergs, harmonies, ke ist, abstract, scan, hw into, uh e olate, dcsmiiare, et guish, sereen, pverage umrlu\lumh chstor, ageregne umm summarize, itemize, review, dip fnto]
o ot o, s bl v, e, ez, bl P o i i s e e
. aberack scon, look nko, ez, ot dcriminte, diningus T 1 ik s b of ot e ey o ks ik o . g, e, e, e, b, i, wﬂ‘“‘"";* el o, laoce o, oy sk, el e
e, ik o, st gl b, Iy, e, o sk B .k, i, g oo st MgHIEH, Ep. P, v, b, rore, i costr, agrogalo, ol s, e oviw dip i o he wben o chalf s spani the e o th g
v ; St - PO VRS Joe S
Fi 21.7 Cheati ith vertical i =
igure . eating wi ertical expansion: |VZ=Yyes
T g T
T T B T S e o o T sy T o i T o i, b, i ok T, e, e, Qo T, o T
e, e, nge ov, s, Bhlgh, o, P, e, b, e ot whet o e ,hm..m e o i e, s, e, e, e, . et oy ym..m‘.Hmwm i o e
o o, e, o, e, bl v, chote, oo itk s o i s ol R e s, s, o, s, e, i, iy ol e i i oo 3k ok bt of ot cveos s vy sci]|
e s, ookt e, o, s ek i, e o, e, Wi, rp. P, R, o, ! e i ot i i i s oo, . i e i ke
ik Tk . . e, Lo, et . e e it e e e e ol et e e b e o o, e, ot e, bl v hoae, g cutalo, s
Eee e, e e, e, e, b o okt el e, it it e e o e e o e, i, o Temtnt, St s e
B, o e i, ot o, il ks, B, b, v, e, ol it e o s, B, sy e o e e, ik o, o, g, e, epc, e, i, ki, ot |
e o s e o b e Aoyt kot e oo, i, o e g gttt i P s e o S e, e, |
i b oo] i, e, o s g s, e, ot s 7 g b
e i s o i \w.mm S e v e A.l,u.‘.'u‘.. e ; e o, bt I it i . i “,m s Nﬂ,mh FIV B
dm inguih, scren, b o slect, it singhe out, seucture, ighlight, group, pie, e, baconiz, s i . brovs, sl . It teoneh, i e, cunerete, s, nepee ol et snge o, s \m.m it o i e, o o]
-w soocth, dunk e, o, onpie, condese, e, el o i the vheat from th chaf and spavate.the shop from e goats. e oo, oo, condense e, b e, e, ctegr e ct o ci
rrage, approite distr gt d . o ol v st ok bt Vsl i, o capaci e e k. e, e, e S
B, o i o, ot g o, ik o, s, e, i, e, Ghe, . i ol i e s, U iy e o e, oo, pick v, e, b, apet, e, sp, i, smoth, cuak]
oo the et 1 the o o i e e o e st .W,w.m e, seegte, o, sonnasae, e, e dp o o i i o b e g N,wm e e m.mL ,!.m”l PR
ey W.\,Tm g e . i 't i s e sy e e porbol, ik ot et e, U iapct, e, s i, oot k| o 1 e o e cul o e S o e o
o o o, o, e, b e, chot, it ol S e it i Wb ik ws b of o s ey e o o, g bl i oot o the'w
ok e, e, e e, Shinee o] okt . g o, e, T, i, i roluae, e .
o ik e, s e, e, e, e, v, i ot s e b, e o, et bl o, e, e, o, ol s, e, e o, e g, i o 2
e, pprasiuse, e, e, o, RS, it i, 1p o] L st sty ook ity s, bt e, denph, e, I R i e o et o, o o e
Ao he Ve o (e hlf e e e . o £ | o e s, e, k. o, e, o, ‘in},“h‘.‘iﬁ iy e 2 it i o M;y‘«‘ e el s ot
D e e e iaow the wheat from the chalfand separaie the sheep fom the goas. capaief e, ot gz, o, e, bl o, coce caegrize, catalo, i
L, o, L o . i o, o] et 3 e g ,M,, . Gt s, .
5 s, e ook It enie, e, diciminer ML st oy ton 2 L e, ik v e, g, b, e, e, e sk et ik
conlole wu« v, sort, integrate, blend, fnspect, St unp, sk, smooth, chunk] We thrive in information-thick worlds because of our marvelous and everyday capacity i b, s, bk i, s, Bl st At wgulsh, screcn, pi) pverage. approximate. dwmu w,.swm outline, summartue, temize, review, dip into]
i T e ko, ik e, s, g, . e, e, s i, oty o] B g, o, e s o g sk, e, et g ATorte
o v Gt o arpenic, condone, e, bk o o i i e, s, s, gt i, st i, i, o e vbeu o th o he e . the o
o he e (e hll pani he e . 1 e i it bk i, b, i 1. o I .
B i e ey d.m L e i o M.‘“ .m,mmW.W.u “t i i s . i iy e i e
< e i i s o o s ad v o e e it st e i e e o i I i hck woks b of otz s vy capac o o, oA o, o, bl G, o ez, ot e
. s, e, Aage o, e, HGght, o, P, e, b, 1 e i i skt i, g ou, e, HEMIGH w.p i, e, btz b, i, o bkt e, bt i, G, e, i
. o xt, oo e b o, e, ot o, o o o e o ,mmmm ey o s o, onie, el e, bl v, o caegtin. o, o] rorbot. ik e, st nteates b, gt Ghe, . i, ot ,.m,‘k
. e, bk ey e, kb, A, nbu, e, ik s o i vy L brch e ke, e, bt e, gtk st b i . g o, o, i, e 5 1
i s . e, B, . e o, . s i i sl . s . sy 1, o, S R e g oy i i g inth

Figure 21.8 Cheating with vertical expansion: [vz=2]

Pages

325

=

| e

Figure 21.11 Cheating: \pageextragoal\lineheight.

21.10 Profiles

You can have a paragraph with lines that exceed the maximum height and/or depth

or where spaces end up in a way that create so called rivers. Rivers are more a cu-
riosity than an annoyance because any attempt to avoid them is likely to result in

a worse looking result. The unequal line distances can be annoying too but these

can be avoided when bringing lines closer together doesn't lead to clashes. This can

be done without reformatting the paragraph by passing the profile option to \se-
tupalign. It comes at the cost of a little more runtime and (as far as we observed) it
kicks in seldom, for instance when inline math is used that has super- or subscripts, rad-
icals, fractions or other slightly higher constructs.

Profiles

326

21.10 Colofon

Author Hans Hagen & Mikael Sundqvist
ConTgXt 2025.02.19 14:35

LuaMetaTgX 2.11.07 ‘ 20250219

Support www.pragma-ade.com

contextgarden.net
ntg-context@ntg.nl

Colofon

327

22 Debugging

low level

1EX

debugging

328

Contents

22.1 Introduction 328
22.2 Token lists 328
22.3 Node lists 331
22.4 Visual debugging 332
22.5 Math 333
22.6 Fonts 335
22.7 Overflow 336
22.8 Side floats 337
22.9 Struts 338
22.10 Features 338
22.11 Profiling 339
22.12 Par builder 340
22.13 More 341

22.1 Introduction

Below there will be some examples of how you can see what TgX is doing. We start with sc
MetaTgX engine. More details about what is possible can be found in documents in the Con
TEXt distribution, for instance the ‘lowlevel’ manuals.

Typesetting involves par building, page building, inserts (footnotes, floats), vertical
adjusters_(stuff before and after the current line), marks (used for running headers

and footers), alignments (to build tables), math, local boxes (left and right of lines), hy-
phenation, font handling, and more and each has its own specific ways of tracing, ei-

ther provided by the engine, or by ConTgXt itself. You can run context --trackers_

to get a list of what ConTgXt can do, as it lists most of them. But we start with the languas

22.2 Token lists

There are two main types of linked lists in TgX: token lists and node lists. Token lists relate
TeX and LuaMetaTgX.

When you define a macro, like the following, you get a token list:
\def\test#1{\bgroup\bf#l\egroup}

Internally the \test macro has carry the argument part and the body, and each is_
encoded as a number plus a pointer to the next token.

Introduction

329

control sequence: test

535220 19 49 match argument 1
596551 20 0 end match

596745 1 123 left brace bgroup
600229 143 0 protected call bf

598760 21 1 parameter reference

592783 2 125 right brace egroup

Here the first (large) number is a memory location that holds two 4 byte integers
per token: the so called info part codes the command and sub command, the two
smaller numbers in the table, and a link part that points to the next memory loca-
tion, here the nest row. The last columns provide details. A character like ‘a’ is one
token, but a control sequence like \foo is also one token because every control se-
quence gets a number. So, both take eight bytes of memory which is why a format
file can become large and memory consumption grows the more macros you use.

In the body of the above \test macro we used \bf so let's see how that looks:

permanent protected control sequence: bf

628 137 24 iftest ifmmode
629 131 O expand after expandafter
630 143 0 protected call mathbf

631 137 3 iftest else

632 131 O expand after expandafter
633 143 0 protected call normalbf
634 137 2 iftest fi

Here the numbers are much lower which is an indication that they are likely in the
format. They are also ordered, which is a side effect of LuaMetaTgX making sure that the ti

\tolerant\permanent\protected\def\test[#1]#:#2%
{{\iftok{#1}{s1}\bs\else\bf\fi#2}}

Gives us:

permanent tolerant protected control sequence: test

23063 12 91 other char [U+0005B
619353 19 49 match argument 1
619358 12 93 other char 1 U+0005D
597174 19 58 match argument :

Token lists

330

597600 19 50 match argument 2
599605 20 0 end match

618639 1 123 left brace

610097 137 29 iftest iftok
600436 1 123 left brace
250342 21 1 parameter reference

593011 2 125 right brace
596427 1 123 left brace

598763 11 115 Iletter s U+00073
618625 11 108 letter 1 U+0006C
601405 2 125 right brace

600515 143 0 protected call bs
50579 137 3 iftest else
595457 143 0 protected call bf
613921 137 2 if test fi
618638 21 2 parameter reference

600105 2 125 right brace

If you are familiar with TEX and spend some time looking at this you will start recognizing
115 translates to letter s because 11 is the so called command code of letters (also
its \catcode) and the s has utf8 value 115. The LuaMetaTlgX specific \iftok conditional has

There is more to tell about these commands and the way macros are defined, for
instance tolerant here means that we can omit the the first argument (between brack-
ets) in which case we pick up after the #:. With protected we indicate that the macro
will not expand in for instance an \edef and permanent marks the macro as one that

a user cannot redefine (assuming that overload protection is enabled). The extended
macro_argument parsing features and macro overload protection are something spe-

cific to LuaMetaTgX.

These introspective tables can be generated with:
\luatokentable\test

after loading the module system-tokens. The reason for having a module and not_
a built-in tracer is that users seldom want to do this. Instead they might use \showlu-
atokens\test that just reports something similar to the console and/or log file.

There is much more to tell but most users have no need to look into these details
unless they are curious about what TgX does. In that case using tracingall and inspecting
MetaTgX we have tried to improve these traces a bit but that's of course subjective and eve

Token lists

331

22.3 Node lists

A node list is what you get from input that is (to be) typeset. There are several ways
to see what node lists are produced but these are all very verbose. Take for instance:

\setbox\scratchbox\hbox{test \bf test}

\showboxhere\scratchbox
This gives us:

\hlist[box][color=1,colormodel=1,mathintervals=1], width 47.8457pt, height 7.48193pt, depth
0.15576pt, direction 121, state 1
Alist
.\glyph[unset][color=1,colormodel=1], protected, wd 4.42041pt, ht 7.48193pt, dp 0.15576pt, language
(n=1,1=2,r=3), hyphenationmode "79F3F, options "80, font <1: DejaVuSerif @ 11.0pt>, glyph U+0074
.\glyph[unset][color=1,colormodel=1], protected, wd 6.50977pt, ht 5.86523pt, dp 0.15576pt, language
(n=1,1=2,r=3), hyphenationmode "79F3F, options "80, font <1: DejaVuSerif @ 11.0pt>, glyph U+0065
.\glyph[unset][color=1,colormodel=1], protected, wd 5.64502pt, ht 5.86523pt, dp 0.15576pt, language
(n=1,1=2,r=3), hyphenationmode "79F3F, options "80, font <1: DejaVuSerif @ 11.0pt>, glyph U+0073
.\glyph[unset][color=1,colormodel=1], protected, wd 4.42041pt, ht 7.48193pt, dp 0.15576pt, language
(n=1,1=2,r=3), hyphenationmode "79F3F, options "80, font <1: DejaVuSerif @ 11.0pt>, glyph U+0074
.\glue[spaceskip][color=1,colormodel=1] 3.49658pt plus 1.74829pt minus 1.16553pt, font 1
.\glyph[unset][color=1,colormodel=1], protected, wd 5.08105pt, ht 7.48193pt, dp 0.15576pt, language
(n=1,1=2,r=3), hyphenationmode "79F3F, options "80, font <10: DejaVuSerif-Bold @ 11.0pt>, glyph
U+0074
.\glyph[unset][color=1,colormodel=1], protected, wd 6.99854pt, ht 5.86523pt, dp 0.15576pt, language
(n=1,1=2,r=3), hyphenationmode "79F3F, options "80, font <10: DejaVuSerif-Bold @ 11.0pt>, glyph
U+0065
.\glyph[unset][color=1,colormodel=1], protected, wd 6.19287pt, ht 5.86523pt, dp 0.15576pt, language
(n=1,1=2,r=3), hyphenationmode "79F3F, options "80, font <10: DejaVuSerif-Bold @ 11.0pt>, glyph
U+0073
.\glyph[unset][color=1,colormodel=1], protected, wd 5.08105pt, ht 7.48193pt, dp 0.15576pt, language
(n=1,1=2,r=3), hyphenationmode "79F3F, options "80, font <10: DejaVuSerif-Bold @ 11.0pt>, glyph
U+0074

The periods indicate the nesting level and the slash in front of the initial field is mostly
a historic curiosity because there are no \hlist and \glue primitives, but actually
there is in LuaMetaTgX a \glyph primitive but that one definitely doesn't want the shown a

That said, here we have a horizontal list where the list field points to a glyph that
itself points to a next one. The space became a glue node. In LuaTgX and even more in Lue
MetaTgX all nodes have or get a subtype assigned that indicates what we're dealing with. T

It will be clear that watching a complete page, with many nested boxes, rules, glyphs, dis-
cretionaries, glues, kerns, penalties, boundaries etc quickly becomes a challenge which
is why we have other means to see what we get so let's move on to that now.

Node lists

332

22.4 Visual debugging

In the early days of ConTgXt, in the mid 90's of the previous century, one of the first presers
TEXt MKIV it was implemented in a different (less intrusive) way and it got gradually extenc

\showmakeup \hbox{test \bf test}

This gives us a framed horizontal box, with some text and a space glue:

, test test

Of course not all information is well visible simply because it can be overlayed by
what follows, but one gets the idea. Also, when you have a layer capable pdf viewer
you can turn on and off categories, so you can decide to only show glue. You can
also do that immediately, with \showmakeup[glue].

There is a lot of granularity: hbox, vbox, vtop, kern, glue, penalty, fontkern, strut, what-
sit, glyph, simple, simplehbox, simplevbox, simplevtop, user, math, italic, ori-

gin, discretionary, expansion, line, space, depth, marginkern, mathkern, dir, par, math-
glue, mark, insert, boundary, the more selective vkern, hkern, vglue, hglue, vpenalty

and hpenalty, as well as some presets like boxes, makeup and all._
When we have:
\showmakeup \framed[align=normal]{\samplefile{ward}}

we_get:

v!g3E@emﬁarth,y@smamhabitatsgﬁormammalsghfe,SPA;Lsanmldﬂaag,emandsmhassg,am..ﬁaraImﬂlness wSeveral,«ingw
sifact..lt.-would-be.happening.whethershumans.had.ever.evolved.or.not..But.our.presencej.«

18:0.

sdiselike.the.effect.of.an.old-age.patient.who.smokes.many.packs.of-cigarettes.per-day=m.

18:0.0

By gﬁldyw,emhzumanssgaresgtheumgarettes,.m Lo

And that is why exploring this with a layers enabled pdf viewer can be of help. Al-
ternatively a more selective use of \showmakup makes sense, like

\showmakeup[line,space] \framed[align=normal]{\samplefile{ward}}

Here we only see lines, regular spaces and spaces that are determined by the space
factor that is driven by punctuation.

Visual debugging

333

LjrheﬂEarth,ﬁ,asﬂasphabitaty,formanimalylife,iisminmoldsy,ag,eﬂandmhasmasgfatalyillness,t,ss,S,eye,ralﬁinl
Jfact.sItswould:be:happening.whether:-humans.had.ever.evolved.or:not..But.ourspresence
Jis:likes-the.effect.of:an-old-age:patient.who.smokes.many.packs.of.cigarettessper.day—
Llandﬂw,esghumansﬁareﬂ,thesy,cigar,ettes ,,, \

We can typeset the previous example with these settings:

\leftskip 2cm
\rightskip 3cm
\hangindent 1cm
\hangafter 2

\parfillrightskip 1lcm

\parfillleftskip 1cm % new

\parinitrightskip 1lcm % new

\parinitleftskip 1cm % new

\parindent 2cm % different

This time we get:
o HE ,,,,,,,,,,,,,,,,,,, T &he.Earth,.as-ashabitat.for.animal.life,.is-in.eld-age . .
s, and.has.adatal.illness..Several,.in.fact..lt.-would.be.happening__
e — whether:humans.had.ever.evolved.or.not...But.our.pres- ...
s zsgJF,,,encey_mhkemj;heﬂ_@ﬂec,tsg,@fsgAaunﬂmldgag,eﬂJpatlentse_whomsmo,ke,sg ,,,
T many.packs.of.cigarettes.per.day=wand.we.humans.are__

thesss: cigaretteS.ms . Lo

Looking at this kind of output only makes sense on screen where you can zoom in
but what we want to demonstrate here is that in LuaMetaTgX we have not only a bit more_
TEX and LuaMetaTgX we have to take care of that.

Another characteristic is that the paragraph stores these (and many more) proper-
ties in the so called initial par node so that they work well in situations where group-
ing would interfere with our objectives. As with all extensions, these are things that
can be configured in detail but they are enabled in ConTgXt by default.

22.5 Math

Math is a good example where this kind of tracing helps development. Here is an
example:

\im { \showmakeup y = \sqrt {2x + 4} }

Math

334

Scaled up we get:

ok,

VarDIN DINJIE MB-H

M.
varrel [re

A

0
Instead of showing everything we can again be more selective:
\im {

\showmakeup[mathglue,glyph]

y = \sqrt {2x + 4}
}

Here we not only limit ourselves to math glue, but also enable showing the bound-

ing boxes of glyphs.
y J varbin |pindig —

relrad
This example also shows that in LuaMetaTgX we have more classes than in a traditional T

varrel

\im {
\showmakeup[mathglue,glyph]
y = \sqrt {x 1 a {\darkred +} x 1 b}

var; relArJ X 1 f%La+ IQ*‘

rbin
Here the variable class is used for alphabetic characters and some more, contrary
to the more traditional (often engine assigned) ordinary class that is now used for
the left-overs.

X

binvar

Math

335

22.6 Fonts

Some of the mentioned tracing has shortcuts, for instance \showglyphs. Here we show
the same sample paragraph as before:

\showglyphs
\showfontkerns
\framed[align=normal]{\samplefile{ward}}

Here is the upper left corner of the result:

The Earth, as a habite

What font kerns we get depends on the font, here we use pagella:

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would be
happening whether humans had ever evolved or not. But our presence is like the effect of an old-age
patient who smokes many packs of cigarettes per day—and we humans are the cigarettes.

If we zoom in the kerns are more visible:

0.165 -0.165

The Earth, as a habitat for animal

0.165

happening whether humans had «

-0.110 -0.385 0.110

patient who smokes many packs «

And here is another one:

\showfontexpansion
\framed[align={normal,hz}]{\samplefile{ward}}

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would be
happening whether humans had ever evolved or not. But our presence is like the effect of an old-age
patient who smokes many packs of cigarettes per day—and we humans are the cigarettes.

Fonts

336

or blown up:

The Earth, as a habitat for animal

-20 -14 -14 -14 -14 -20-20-14 20 14 14 —14 -14 -14 -14 -2620-14 -20 -20-14 -20 -14 -14 -2614 -14 -20

happening whether humans had ¢

-14 -14 ™4 -14-14 -1514 -4 -14 -14-1914 -14-19 14 -14 -4 -14-14 -14 -14 -14-14

patient who smokes many packs ¢

The last line (normally) doesn't need expansion, unless we want it to compatible with
preceding lines, space-wise. So when we do this:

\showfontexpansion
\framed[align={normal,hz,fit}]{\samplefile{ward}}

the fit directives results in somewhat different results:

The Earth, as a habitat for animal

-20 -14 -14 -14 -14 -20-20-14 20 14 14 *14 -14 -14 -14 -2620-14 -20 -26:14 20 -14 -14 -2614 -14 -20

happening whether humans had ¢

-14 -14 -14-14 -1514 -4 -14 -14-1914 -14-19 -14 14 -4 -14-14 -14 14 -14-14 0 -]

patient who smokes many packs

22 313122 22 31 22 22 22 22 22 22 22 22 22 22 22 2222 22

As with other visual tracers you can get some insight in how TgX turns your input into a ty

22.7 Overflow

By default the engine is a bit stressed to make paragraphs fit well. This means that

we _can_get overflowing lines. Because there is a threshold only visible overflow is
reported. If you want a visual clue, you can do this:

\enabletrackers[builders.hpack.overflow]
With:

\ruledvbox{\hsize 3cm test test test test test test test test}

Overflow

337

We get:

test test test |
test test test |
test test

The red bar indicates a potential problem. We can also get an underflow, as demon-
strated here:

\ruledvbox {
\setupalign[verytolerant,stretch]
\hsize 3cm test test test test test test test test

}

Now we get a blue bar that indicates that we have a bit more stretch than is con-
sidered optimal:

test test |
test test |
test test |
test test

Especially in automated flows it makes sense to increase the tolerance and permit
stretch. Only when the strict attempt fails that will kick in.

22.8 Side floats

Some mechanisms are way more complex than a user might expect from the result. An_
example is the placement of float and especially side floats.

,,,,,,N,o,t:only:do:w,e:haye:to,,_,make:s,ur,e:that:the:spacing,,_,befare:such;aL
r float is as good and consistent as possible, we also need the progres-

sion to work out well, that is: the number of lines that we need to
ﬁ indent.

For that we need to estimate the space needed, look at the amount

of space before and after the float, check if it will fit and move to_

the next page if needed. That all involves dealing with interline spacing, interpara-

graph spacing, spacing at the top of a page, permitted slack at the bottom of page, the
depth of the preceding lines, and so on. The tracer shows some of the corrections
involved but leave it to the user to imagine what it relates to; the previous sentence
gives some clues. This tracker is enables with:

Side floats

338

\enabletrackers[floats.anchoring]

22.9 Struts

We now come to one of the most important trackers, \showstruts, and a few exam-
ples shows why:

Fest

fest | test

I fest |

width=.2tw height=1cm offset=0pt offset=overlay

Here in all cases we've set the width to 20 percent of the text width (tw is an ex-
ample of a plugged in dimension). In many places ConTgXt adds struts in order to enforce t

22.10 Features

Compared to the time when TgX showed up the current fonts are more complicated, especie

font
features

step_1

step_2

step_3

result

22: texgyrepagella-regular.otf @ 10.0pt
[basic: kern=yes, liga=yes, mark=yes, mkmk=yes, script=dflt] [extra: anc

U+65:e U+66:f [pre: U+2D:-] U+66:f U+65:e [pre: U+5F:_
replace: U+5F:_] U+66:f U+69:i U+65:e U+74:t [pre: U+2D:-] U+73:s
U+65:e U+6E:n

feature 'liga', type 'gsub ligature', lookup 's s 9', replacing U+66 (f)
U+65:e [pre: U+66:f U+2D:- post: U+66:f replace:

U+FBOO:ff] U+65:e [pre: U+5F:_ replace: U+5F:_] U+66:f U+69:i
U+65:e U+74:t [pre: U+2D:-] U+73:s U+65:e U+6E:n

feature 'liga', type 'gsub ligature', lookup 's s 10', replacing U+66 (f

U+65:e [pre: U+66:f U+2D:- post: U+66:f replace:
U+FBOO:ff] U+65:e [pre: U+5F:_ replace: U+5F:_] U+FBOLl:fi U+65:e
U+74:t [pre: U+2D:-] U+73:s U+65:e U+6E:n

feature 'kern', type 'gpos pair', lookup 'p s 0', inserting move -0.149¢

U+65:e [pre: U+66:f U+2D:- post: U+66:f [kern] replace:
U+FBOO:ff] U+65:e [pre: U+5F:_ replace: U+5F:_] U+FBO1l:fi U+65:e
U+74:t [pre: U+2D:-] U+73:s U+65:e U+6E:n

Struts

339

Not all features listed here are provided by the font (only the four character ones) be-
cause we're using TgX which, it being TgX, means that we have plenty more ways to mess :

With Cambria we get a single replacement combined with kerning:
font 23: cambria.ttc @ 10.0pt
features [basic: kern=yes, liga=yes, mark=yes, mkmk=yes, script=latn] [extra: anc

step_1 U+65:e U+66:f [pre: U+2D:-] U+66:f U+65:e [pre: U+5F:_
replace: U+5F:_] U+66:f U+69:i U+65:e U+74:t [pre: U+2D:-] U+73:s
U+65:e U+6E:n

feature 'liga', type 'gsub contextchain', chain lookup 's s 38', replaci

step_2 U+65:e U+66:f [pre: U+2D:-] U+66:f U+65:e [pre: U+5F:_
replace: U+5F:_] U+F016C:f U+69:i U+65:e U+74:t [pre: U+2D:-]
U+73:s U+65:e U+6E:n

feature 'kern', type 'gpos pair', merged lookup 'p s 0', inserting move_

result U+65:e U+66:f [pre: U+2D:-] U+66:f [kern] U+65:e [pre:
U+5F:_ replace: U+5F:_] U+FO16C:f U+69:i U+65:e U+74:t [pre:
U+2D:-] U+73:s U+65:e U+6E:n

One complication is that hyphenation kicks in which means that whatever we do has
to take the pre, post and replacement bits into account combined which what comes
before and after. Especially for complex scripts this tracker can be illustrative but

even then only for those who like to see what fonts do and/or when they add addi-
tional features runtime.

22.11 Profiling

There are some features in ConTgXt that are nice but only useful in some situations. An exe

.The_command_\binom_is_the_standard_notation_for_binomial_coefficients_
Jand_is_preferred_over_\choose, which_is_an_older_macro_that_has_limited_

2
.compatibility_with_newer_packages_and_font_encodings:_|A| = (1}\(]) _Ad-

.ditionally, \binom_ uses_proper_spacing_and_size_for_the_binomial symbol._In_
.conclusion,_it_is_recommended_to_use_\binom_instead_of_\choose_in_TgX_for_typesetting_binomial_coeffi

The previous paragraph is what comes out by default, while the next one used these
settings plus an additional \enabletrackers[profiling.lines.show].

Profiling

340

ed_

Er
4
@
i
&
=

®
N
9

=
~
-
9]
=3
o

o)

0
o

I

g
2]
al
s
7
=
2|
=

IE }
]

o
(s
4
5
@
by
:

2
_compatibility_with_newer_packages_and_font_encodings:_|A| = (N _Ad-

.ditionally, \binom_ uses_proper_spacing_and_size_for_the_binomial symbol._In_
.conclusion,_it_is_recommended_to_use_\binom_instead_of_\choose_in_TgX_for_typesetting_binomial_coeffi

This feature will bring lines together when there is no clash and is mostly of use

when a lot of inline math is used. However, when this variant of profiling (we have

an older one too) is enabled on a 300 page math book with thousands of formulas, only
in a few places it demonstrated effect; it was hardly needed anyway. So, sometimes
tracing shows what makes sense or not.

22.12 Par builder
Here is is a sample paragraph from Knuths “Digital Typography”:

15. (This procedure maintains four integers (A, B,C, D) with the invariant meaning

fhat “our remaining job is to output the continued fraction for (Ay+ B)/(Cy+ D), where y i
khe input yet to come.”) Initially set j « k <« 0, (A, B, C, D) « (a, b, ¢, d); then
input_x;_and_set (A, B,C, D) « (Ax;+ B, A,Cx;+ D, C),_j < j+ 1, one_or_more_

fkimes juntil C + D _has the same sign as C. (When j > 1 and the input has not ter-
Iminated, we know that 1 <y <o; and when C+ D has the same sign as C we know
fkherefore that (Ay+B)/(Cy+ D) lies between (A+B)/(C+ D) and A/C.) Now comes_

khe general step: If no integer lies strictly between (A + B)/(C + D) and A/C, out-

Jput X, «|A/C], and set (A, B,C, D) « (C,D, A- XyC,B— X;D), k « k +1; other-
Jwise_input_x; and_set (A,B,C,D) < (Ax;+B,A,Cx;+D,C), j« j+1. The [general
tep_is_repeated_ad_infinitum. However,_if at any time_the final x; is_input, the_ algorithm im
B)/(Cxj+ D), using_Euclid's_algorithm, and terminates.

There are indicators with tiny numbers that indicate the possible breakpoints and
we _can see what the verdict is:

1 1 0 10001 0 verytight disc 7 1 10 9 10001 80346 verytight disc 14 121110986321
2 2 1 10001 0 verytight disc 8 2 11 10 0 102946 decent disc 15 131110986321
31 3 2 165 53125 veryloose disc 9 2 12 11 16 116122 loose disc 16 121110986321
4 2 6 22756 decent disc 2 13 11 0 115546 decent disc 17 131110986321
4 5 4 166 76232 veryloose disc 10 14 12 131 148503 veryloose disc 18 17131110986321
1 6 3 166 67650 loose disc 15 13 14 128622 loose disc
7 4 16 35932 tight disc 16 12 14 128722 decent disc pass : 3 demerits : 129490
5 8 6 4 80346 decent disc 17 13 28 129490 tight disc subpass : T looseness : 0
6 9 8 10001 80346 verytight disc 11 18 17 10001 129490 verytight penalty subpasses : 0

The last lines in the last column show the route that the result takes. Without go-
ing into details, here is what we did:

\startshowbreakpoints

Par builder

341

\samplefile{math-knuth-dt}
\stopshowbreakpoints

\showbreakpoints

This kind of tracing is part of a mechanism that makes it possible to influence the

choice by choosing a specific preferred breakpoint but that is something the average

user is unlikely to do. The main reason why we have this kind of trackers is that

when developing the new multi-step par builder feature we wanted to see what ex-

actly it did influence. That mechanism uses an LuaMetaTgX feature where we can plug in a
or badness are met. Each step can set the relevant parameters differently, including
expansion, which actually makes for more efficient output and better runtime when

that features is not needed to get better results.

22.13 More

There are many more visual trackers, for instance layout.vz for when you enabled
vertical expansion, typesetters.suspects for identifying possible issues in the input

like invisible spaces. Trackers like nodes.destinations and nodes.references will

show the areas used by these mechanisms. There are also trackers for positions, (cjk
and other), script handling, rubies, tagging, italic correction, breakpoints and so on. The
examples in the previous sections illustrate what to expect and when to use a spe-

cific mechanism knowing this might trigger you to check if a tracker exists. Often

the test suite has examples of usage.

22.13 Colofon

Author Hans Hagen & Mikael Sundqvist
ConTgXt 2025.02.19 14:35

LuaMetaTgX 2.11.07 ‘ 20250219

Support www.pragma-ade.com

contextgarden.net
ntg-context@ntg.nl

More

342

23 Pages

low level

1EX

pages

343

Contents
23.1 Introduction 343
23.2 Rows becoming columns 343

23.1 Introduction

There are several builder in the engine: paragraphs, math, alignments, boxes and

if course pages. But where a paragraph is kind of complete and can be injected on_
a line by line basis, a page is less finished. When enough content is collected the
result so far is handled over to the output routine. Calling it a routine is somewhat
confusing because it is not really a routine, it's the token list \output that gets ex-
panded and what in there is supposed to something with the result, like adding in-
serts (footnotes, moved around graphics aka floats, etc.), adding headers and foot-
ers, possibly using marks, and finally wrapping up and shipping out.

The engine primarily offers a single column page so two or more columns are done

by using tricks, like typesetting on a double height and splitting the result. If columns
need to be balanced some extra work has to be done, and it's definitely non trivial
when we have more that just text.

In this chapter we will discuss and collect some mechanisms that deal with pages
or operate at the outer vertical level. We might discuss some primitive but more likely
you will see various solutions based on TgX macros and Lua magic.

This is work in progress.

23.2 Rows becoming columns

This is _an_experimental mechanism. We need to check/decide how to deal with penal-
ties. We also need to do more checking.

Conceptually this is a bit strange feature but useful nevertheless. There are several

multi-column mechanisms in ConTgXt and each is made for a specific kind of usage. You car

\starttabulate[|1|1]]

\NC 1 \NC one \NC \NR
\NC 2 \NC two \NC \NR
\NC 3 \NC three \NC \NR
\NC 4 \NC four \NC \NR
\NC 5 \NC five \NC \NR

Introduction

344

\stoptabulate

but you don't want to waste space. So you might want:

1 one 4 four
2 two 5 five
3 three

or maybe even this:

1 one 3 three 5 five
2 two 4 four

but still wants to code like this:

\starttabulate[|1|1]]
\NC 1 \NC one \NC \NR
\NC 2 \NC two \NC \NR
\NC 3 \NC three \NC \NR
\NC 4 \NC four \NC \NR
\ANC 5 \NC five \NC \NR
\stoptabulate

You can do this:

\startcolumns[n=3]
\getbuffer
\stopcolumns

The (mixed) columns mechanism used here normally works ok but because of the
way columns are packaged they don't work well with for instance ‘vz’. Page columns
do_a better job but don't mix with single columns that well. Another solution is this:

\startrows[n=3,before=\blank,after=\blank]
\getbuffer
\stoprows

Here the result is collected in a vertical box, post processed and flushed line by line. We
need to explicitly handle the before and after spacing here because it gets discarded

(if added at all). When a slice of the box is part of the shipped out page the cells

are swapped so that instead of going horizontal we go vertical. Compare the origi-

nal

Alone] Blwol Blthred

Rows becoming columns

345

.;_4|q|§,|f0urn L. five .

T 1717 1 1T717 il | |
with the swapped one:

1. lone . 43 three ,751|”,W\H\ﬁve)

2l WO . 4. four. .

This is not really a manual but let's mention a few configuration options. The n pa-

rameter controls the number of columns. In order to support swapping this mecha-

nism adds empty pseudo cells for as far as needed. By default the order is vertical but_
one can set it to horizontal instead. In the next example we have set height to 2\strutht

1. lone . EBHFthree ol five .

1 - T 17T

WO . A

. | . 4. . four.
111

|
il

Il ‘u
i

When you set height and depth to max all cells will get these dimensions from the
tallest cell. Compare:

JAlly=x+1 . By =4x2 +1

Ry =x2+1. Aly=5+1.
1 X2

with

Ay =x+1 . By =yx2+1

5_271|'<71|{1|y = XP—‘"' 1 B H_47H7 {y ﬂ”v 1 +]_ 'S
N"X:,,

In the examples with tabulate we honor the original dimensions but you can also set
the width, combined with a distance. Instead of a dimension the width parameter
can be set to fit.

,,,,,,,,,, .in tables) that can be = .lems but when used in |

In _case one wonders, of |
.JJcourse regular columns
.Jcan_be used, but this is | .possible footnotes are | __.knows what _goes_ in, it]
Jan_alternative that actu- | .supported but of course | .is quite powerful any- |
|
|
]

Jally_gives you balancing
Jfor _free, but of course
<with the limitation that | .mechanism is not the | .fafion.
.we_have lines (or cells | .solution for all prob- [. j

In the previous rendering we have set the width as mentioned but also set align to
verytolerant,stretch so that we don't overflow lines. The before and after para-
meters are set to \blank.

Rows becoming columns

346

23.2 Colofon

Author Hans Hagen & Mikael Sundqvist
ConTgXt 2025.02.19 14:35

LuaMetaTgX 2.11.07 ‘ 20250219

Support www.pragma-ade.com

contextgarden.net
ntg-context@ntg.nl

Colofon

