sureLDA: A Novel Multi-Disease Automated Phenotyping Method for the EHR
A statistical learning method to simultaneously predict a range of target phenotypes using codified and natural language processing (NLP)-derived Electronic Health Record (EHR) data. See Ahuja et al (2020) JAMIA <doi:10.1093/jamia/ocaa079> for details.
| Version: | 
0.1.0-1 | 
| Depends: | 
R (≥ 3.0), Matrix | 
| Imports: | 
pROC, glmnet, MAP, Rcpp, foreach, doParallel | 
| LinkingTo: | 
Rcpp, RcppArmadillo | 
| Suggests: | 
knitr, rmarkdown | 
| Published: | 
2020-11-10 | 
| DOI: | 
10.32614/CRAN.package.sureLDA | 
| Author: | 
Yuri Ahuja [aut, cre],
  Tianxi Cai [aut],
  PARSE LTD [aut] | 
| Maintainer: | 
Yuri Ahuja  <Yuri_Ahuja at hms.harvard.edu> | 
| BugReports: | 
https://github.com/celehs/sureLDA/issues | 
| License: | 
GPL-3 | 
| URL: | 
https://github.com/celehs/sureLDA | 
| NeedsCompilation: | 
yes | 
| Materials: | 
README  | 
| CRAN checks: | 
sureLDA results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=sureLDA
to link to this page.