--- title: "Communications Backend for R" vignette: > %\VignetteIndexEntry{Communications Backend for R} %\VignetteEngine{litedown::vignette} %\VignetteEncoding{UTF-8} --- ### 1. Mirai Parallel Clusters mirai provides an alternative communications backend for R. This functionality was developed to fulfil a request by R Core at R Project Sprint 2023. A 'miraiCluster' is recognised as one of the official cluster types in R 4.5, and may be created by `parallel::makeCluster(type = "MIRAI")`. This function calls `make_cluster()`, which may also be used to create a 'miraiCluster' directly. + Specify 'n' to launch nodes on the local machine. + Specify 'url' for receiving connections from remote nodes. + Optionally, specify 'remote' to launch remote daemons using a remote configuration generated by `ssh_config()`, `cluster_config` or `remote_config()`. Created clusters may be used for any function in the `parallel` base package such as `parallel::clusterApply()` or `parallel::parLapply()`, or the load-balanced versions such as `parallel::parLapplyLB()`. ``` r library(parallel) library(mirai) cl <- makeCluster(6, type = "MIRAI") cl #> < miraiCluster | ID: `0` nodes: 6 active: TRUE > parLapply(cl, iris, mean) #> $Sepal.Length #> [1] 5.843333 #> #> $Sepal.Width #> [1] 3.057333 #> #> $Petal.Length #> [1] 3.758 #> #> $Petal.Width #> [1] 1.199333 #> #> $Species #> [1] NA ``` `status()` may be called on a 'miraiCluster` to query the number of connected nodes at any time. ``` r status(cl) #> $connections #> [1] 6 #> #> $daemons #> [1] "ipc:///tmp/17a6f7acaa486a0965f8cc93" stopCluster(cl) ``` Making a cluster specifying 'url' without 'remote' causes the shell commands for manual deployment of nodes to be printed to the console. ``` r cl <- make_cluster(n = 2, url = host_url()) #> Shell commands for deployment on nodes: #> #> [1] #> Rscript -e 'mirai::daemon("tcp://10.216.56.131:56086",dispatcher=FALSE,cleanup=FALSE,rs=c(10407,-2073136245,467375440,180068625,-1065429090,1847832455,-1308333540))' #> #> [2] #> Rscript -e 'mirai::daemon("tcp://10.216.56.131:56086",dispatcher=FALSE,cleanup=FALSE,rs=c(10407,1128753498,-761681793,-797169560,1768314793,2144223490,1125401129))' stop_cluster(cl) ``` ### 2. Foreach Support A 'miraiCluster' may also be registered by [`doParallel`](https://cran.r-project.org/package=doParallel) for use with the [`foreach`](https://cran.r-project.org/package=foreach) package. Running some parallel examples for the `foreach()` function: ``` r library(doParallel) #> Loading required package: foreach #> Loading required package: iterators library(foreach) cl <- makeCluster(6, type = "MIRAI") registerDoParallel(cl) # normalize the rows of a matrix m <- matrix(rnorm(9), 3, 3) foreach(i = 1:nrow(m), .combine = rbind) %dopar% (m[i, ] / mean(m[i, ])) #> [,1] [,2] [,3] #> result.1 -1.462197 2.532811 1.929385 #> result.2 -3.332547 1.902017 4.430530 #> result.3 6.080006 -10.961048 7.881042 # simple parallel matrix multiply a <- matrix(1:16, 4, 4) b <- t(a) foreach(b = iterators::iter(b, by='col'), .combine = cbind) %dopar% (a %*% b) #> [,1] [,2] [,3] [,4] #> [1,] 276 304 332 360 #> [2,] 304 336 368 400 #> [3,] 332 368 404 440 #> [4,] 360 400 440 480 stopCluster(cl) ```