--- title: "Get started with giscoR" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Get started with giscoR} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- # Introduction *Full site with more examples and vignettes on * [**giscoR**](https://ropengov.github.io/giscoR/) is a package designed to provide a simple interface to the [GISCO API](https://gisco-services.ec.europa.eu/distribution/v2/). Within Eurostat, GISCO meets the European Commission's geographical information needs at three levels: the European Union, its member countries, and its regions. GISCO provides shapefiles in different formats, focusing especially on the European Union but also offering some worldwide datasets such as country polygons, labels, borders, and coastlines. GISCO supplies data at multiple resolutions: high-detail datasets for small areas (01M, 03M) and lightweight datasets for larger areas (10M, 20M, 60M). Datasets are available in three projections: [EPSG:4326](https://epsg.io/4326), [EPSG:3035](https://epsg.io/3035), and [EPSG:3857](https://epsg.io/3857). **giscoR** returns [`sf`](https://r-spatial.github.io/sf/reference/sf.html) objects; see for details. # Caching **giscoR** supports caching of downloaded datasets. Set the cache directory with: ``` r gisco_set_cache_dir("./path/to/location") ``` If a file is not available locally, it will be downloaded to that directory so subsequent requests for the same data will load from the local cache. If you experience any problems downloading, you can also manually download the file from the [GISCO API website](https://gisco-services.ec.europa.eu/distribution/v2/) and store it in your local cache directory. # Downloading data Please note the following attribution and licensing requirements when using GISCO data: > [Eurostat's general copyright notice and licence > policy](https://ec.europa.eu/eurostat/web/main/help/copyright-notice) applies. > Moreover, there are specific rules that apply to some of the following > datasets available for downloading. The download and use of these data are > subject to these rules being accepted. See our [administrative > units](https://ec.europa.eu/eurostat/web/gisco/geodata/administrative-units) > and [statistical > units](https://ec.europa.eu/eurostat/web/gisco/geodata/statistical-units) for > more details. > > Source: There is a function, `gisco_attributions()`, that provides guidance on this topic and returns attributions in several languages. ``` r library(giscoR) c( gisco_attributions(lang = "en"), gisco_attributions(lang = "fr"), gisco_attributions(lang = "de") ) |> cat(sep = "\n\n") #> © EuroGeographics for the administrative boundaries #> #> © EuroGeographics pour les limites administratives #> #> © EuroGeographics bezüglich der Verwaltungsgrenzen ``` # Basic example Examples of downloading data: EU member states and candidate countries as of 2024: ``` r library(dplyr) library(ggplot2) world <- gisco_get_countries(resolution = 3, epsg = 3035) world <- world |> mutate( status = case_when( EU_STAT == "T" ~ "Current members", CC_STAT == "T" ~ "Candidate countries", TRUE ~ NA ), # As levels status = factor(status, levels = c("Current members", "Candidate countries")) ) ggplot(world) + geom_sf(fill = "#c1c1c1") + geom_sf(aes(fill = status), color = "white") + guides(fill = guide_legend(direction = "horizontal")) + # Center in Europe: EPSG 3035 coord_sf( xlim = c(2377294, 7453440), ylim = c(1313597, 5628510) ) + scale_fill_manual( values = c("#039", "#2782bb"), na.value = "#c1c1c1", na.translate = FALSE ) + theme_minimal() + theme( panel.background = element_rect(fill = "grey90", color = NA), axis.line = element_blank(), axis.text = element_blank(), panel.grid = element_blank(), legend.position = "bottom" ) + labs( title = "EU Member states and Candidate countries (2024)", caption = gisco_attributions(), fill = "" ) ```
EU Member states and Candidate countries (2024)

EU Member states and Candidate countries (2024)

You can select specific countries by name (in any language), ISO3 codes, or Eurostat codes. However, you cannot mix these identifier types in a single call. You can also combine different datasets — set `resolution` and `epsg` (and optionally `year`) to the same value: ``` r cntr <- c("Morocco", "Algeria", "Tunisia", "Libya", "Egypt") africa_north <- gisco_get_countries( country = cntr, resolution = "03", epsg = "4326", year = "2024" ) # For ordering the plot africa_north$NAME_ENGL <- factor(africa_north$NAME_ENGL, levels = cntr) # Coastlines coast <- gisco_get_coastal_lines( resolution = "03", epsg = "4326", year = "2016" ) # Plot ggplot(coast) + geom_sf(color = "#B9B9B9") + geom_sf(data = africa_north, fill = "#346733", color = "#335033") + coord_sf(xlim = c(-13, 37), ylim = c(18.5, 40)) + facet_wrap(vars(NAME_ENGL), ncol = 2) + labs(caption = gisco_attributions("fr")) ```
Political map of North Africa

Political map of North Africa

# Thematic maps with **giscoR** This example shows how **giscoR** can be used together with Eurostat data. For plotting we use **ggplot2**; however, any package that supports `sf` objects (e.g., **tmap**, **mapsf**, **leaflet**) can be used. ``` r # EU members library(giscoR) library(dplyr) library(eurostat) library(ggplot2) nuts2 <- gisco_get_nuts( year = "2021", epsg = "3035", resolution = "10", nuts_level = "2" ) # Borders from countries borders <- gisco_get_countries(epsg = "3035", year = "2020", resolution = "3") eu_bord <- borders |> filter(CNTR_ID %in% nuts2$CNTR_CODE) # Eurostat data - Disposable income pps <- get_eurostat("tgs00026") |> filter(TIME_PERIOD == "2022-01-01") nuts2_sf <- nuts2 |> left_join(pps, by = "geo") |> mutate( values_th = values / 1000, categ = cut(values_th, c(0, 15, 30, 60, 90, 120, Inf)) ) # Adjust the labels labs <- levels(nuts2_sf$categ) labs[1] <- "< 15" labs[6] <- "> 120" levels(nuts2_sf$categ) <- labs # Finally the plot ggplot(nuts2_sf) + # Background geom_sf(data = borders, fill = "#e1e1e1", color = NA) + geom_sf(aes(fill = categ), color = "grey20", linewidth = .1) + geom_sf(data = eu_bord, fill = NA, color = "black", linewidth = .15) + # Center in Europe: EPSG 3035 coord_sf(xlim = c(2377294, 6500000), ylim = c(1413597, 5228510)) + # Legends and color scale_fill_manual( values = hcl.colors(length(labs), "Geyser", rev = TRUE), # Label NA labels = function(x) { ifelse(is.na(x), "No Data", x) }, na.value = "#e1e1e1" ) + guides(fill = guide_legend(nrow = 1)) + theme_void() + theme( text = element_text(colour = "grey0"), panel.background = element_rect(fill = "#97dbf2"), panel.border = element_rect(fill = NA, color = "grey10"), plot.title = element_text(hjust = 0.5, vjust = -1, size = 12), plot.subtitle = element_text( hjust = 0.5, vjust = -2, face = "bold", margin = margin(b = 10, t = 5), size = 12 ), plot.caption = element_text( size = 8, hjust = 0, margin = margin(b = 4, t = 8) ), legend.text = element_text(size = 7, ), legend.title = element_text(size = 7), legend.position = "bottom", legend.direction = "horizontal", legend.text.position = "bottom", legend.title.position = "top", legend.key.height = rel(0.5), legend.key.width = unit(.1, "npc") ) + # Annotate and labels labs( title = "Disposable income of private households (2022)", subtitle = "NUTS-2 level", fill = "euros (thousands)", caption = paste0( "Source: Eurostat, ", gisco_attributions() ) ) ```
Disposable income of private households by NUTS 2 regions (2022)

Disposable income of private households by NUTS 2 regions (2022)