## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(EGM) ## ----eval=TRUE---------------------------------------------------------------- # Locate the WFDB files in the package dir_path <- system.file('extdata', package = 'EGM') # Read the same data in both digital and physical units ecg_digital <- read_wfdb( record = "muse-sinus", record_dir = dir_path, units = "digital" ) ecg_physical <- read_wfdb( record = "muse-sinus", record_dir = dir_path, units = "physical" ) # Examine the header to see the conversion parameters head(ecg_digital$header) #> file_name storage_format ADC_gain ADC_baseline ADC_units ADC_resolution #> 1 muse-sinus.dat 16 200 0 mV 16 #> 2 muse-sinus.dat 16 200 0 mV 16 #> 3 muse-sinus.dat 16 200 0 mV 16 #> 4 muse-sinus.dat 16 200 0 mV 16 #> 5 muse-sinus.dat 16 200 0 mV 16 #> 6 muse-sinus.dat 16 200 0 mV 16 ## ----eval=TRUE---------------------------------------------------------------- # Extract the first 10 samples from lead II digital_values <- ecg_digital$signal$II[1:10] physical_values <- ecg_physical$signal$II[1:10] # Get the conversion parameters for lead II from the header lead_ii_row <- ecg_digital$header[ecg_digital$header$label == "II", ] gain <- lead_ii_row$ADC_gain baseline <- lead_ii_row$ADC_baseline # Create a comparison table comparison <- data.frame( sample = 1:10, digital = digital_values, physical = round(physical_values, 3), calculated_physical = round((digital_values - baseline) / gain, 3) ) print(comparison) #> Sample Digital Physical Calculated #> 1 1 5 0.025 0.025 #> 2 2 5 0.025 0.025 #> 3 3 5 0.025 0.025 #> 4 4 10 0.050 0.050 #> 5 5 10 0.050 0.050 #> 6 6 10 0.050 0.050 #> 7 7 10 0.050 0.050 #> 8 8 15 0.075 0.075 #> 9 9 20 0.100 0.100 #> 10 10 24 0.120 0.120 # Verify the conversion formula cat("\nLead II conversion parameters:\n") cat(" Gain:", gain, "ADC units/mV\n") cat(" Baseline:", baseline, "ADC units\n") #> Lead II conversion parameters: #> Gain: 200 ADC units/mV #> Baseline: 0 ADC units ## ----------------------------------------------------------------------------- fp <- system.file('extdata', 'muse-sinus.xml', package = 'EGM') ecg <- read_muse(fp) fig <- ggm(ecg) + theme_egm_light() fig ## ----------------------------------------------------------------------------- # Let x = 10-second signal dataset # We will apply this across the dataset # This is an oversimplified approach. find_peaks <- function(x, threshold = mean(x, na.rm = TRUE) + 2 * sd(x, na.rm = TRUE) ) { # Ensure signal is "positive" for peak finding algorithm x <- abs(x) # Find the peaks peaks <- which(diff(sign(diff(x))) == -2) + 1 # Filter the peaks peaks <- peaks[x[peaks] > threshold] # Return peaks } # Create a signal dataset dat <- extract_signal(ecg) # Find the peaks sig <- dat[["I"]] pk_loc <- find_peaks(sig) pk_val <- sig[pk_loc] pks <- data.frame(x = pk_loc, y = pk_val) # Plot them plot(sig, type = "l") points(x = pks$x, y = pks$y, col = "orange") ## ----------------------------------------------------------------------------- # Find the peaks raw_signal <- dat[["I"]] peak_positions <- find_peaks(raw_signal) peak_positions # Annotations do not need to store the value at that time point however # The annotation table function has the following arguments args(annotation_table) # We can fill this in as below using additional data from the original ECG hea <- ecg$header start <- attributes(hea)$record_line$start_time hz <- attributes(hea)$record_line$frequency ann <- annotation_table( annotator = "our_pks", sample = peak_positions, type = "R", frequency = hz, channel = "I" ) # Here are our annotations ann # Then, add this back to the original signal ecg$annotation <- ann ecg